These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34718360)

  • 21. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol.
    Zhu X; Iyengar SS
    J Chem Theory Comput; 2022 Sep; 18(9):5125-5144. PubMed ID: 35994592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation.
    Li Y; Yuan D; Wang Q; Li W; Li S
    Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method.
    Li Y; Wang D; Fu F; Xia Q; Li W; Li S
    J Comput Chem; 2022 Apr; 43(10):704-716. PubMed ID: 35213748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structures and properties of large supramolecular coordination complexes predicted with the generalized energy-based fragmentation method.
    Yuan D; Li Y; Li W; Li S
    Phys Chem Chem Phys; 2018 Nov; 20(45):28894-28902. PubMed ID: 30421758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
    Wang Z; Han Y; Li J; He X
    J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graph-convolutional neural networks for (QM)ML/MM molecular dynamics simulations.
    Hofstetter A; Böselt L; Riniker S
    Phys Chem Chem Phys; 2022 Sep; 24(37):22497-22512. PubMed ID: 36106790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QM/MM Calculations on Proteins.
    Ryde U
    Methods Enzymol; 2016; 577():119-58. PubMed ID: 27498637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate Prediction of NMR Chemical Shifts in Macromolecular and Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method.
    Zhao D; Song R; Li W; Ma J; Dong H; Li S
    J Chem Theory Comput; 2017 Nov; 13(11):5231-5239. PubMed ID: 28976772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining Evolutionary Conservation and Quantum Topological Analyses To Determine Quantum Mechanics Subsystems for Biomolecular Quantum Mechanics/Molecular Mechanics Simulations.
    Hix MA; Leddin EM; Cisneros GA
    J Chem Theory Comput; 2021 Jul; 17(7):4524-4537. PubMed ID: 34087064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation.
    Chen J; Wang J; Zhang Q; Chen K; Zhu W
    J Biomol Struct Dyn; 2015; 33(12):2606-18. PubMed ID: 25562613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of protein environment within cytochrome P450cam evaluated using a polarizable-embedding QM/MM method.
    Thellamurege NM; Hirao H
    J Phys Chem B; 2014 Feb; 118(8):2084-92. PubMed ID: 24484442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method.
    Zeng X; Hu H; Hu X; Yang W
    J Chem Phys; 2009 Apr; 130(16):164111. PubMed ID: 19405565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.
    Wu J; Shen L; Yang W
    J Chem Phys; 2017 Oct; 147(16):161732. PubMed ID: 29096448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facilitating
    Snyder R; Kim B; Pan X; Shao Y; Pu J
    Phys Chem Chem Phys; 2022 Oct; 24(41):25134-25143. PubMed ID: 36222412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Machine Learning Force Field for Bio-Macromolecular Modeling Based on Quantum Chemistry-Calculated Interaction Energy Datasets.
    Fan ZX; Chao SD
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38247928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.