These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34718402)

  • 1. A similarity-based deep learning approach for determining the frequencies of drug side effects.
    Zhao H; Wang S; Zheng K; Zhao Q; Zhu F; Wang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossfeat: a transformer-based cross-feature learning model for predicting drug side effect frequency.
    Baek B; Lee H
    BMC Bioinformatics; 2024 Oct; 25(1):324. PubMed ID: 39379821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSDRP: a deep learning model based on multisource data for predicting drug response.
    Zhao H; Zhang X; Zhao Q; Li Y; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DSGAT: predicting frequencies of drug side effects by graph attention networks.
    Xu X; Yue L; Li B; Liu Y; Wang Y; Zhang W; Wang L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repositioning through integration of prior knowledge and projections of drugs and diseases.
    Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T
    Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSDAFL: molecular substructure-based dual attention feature learning framework for predicting drug-drug interactions.
    Hou C; Duan G; Yan C
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39383521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Representation Learning for Predicting Drug-side Effect Frequency using Protein Target Information.
    Park S; Lee S; Pak M; Kim S
    IEEE J Biomed Health Inform; 2024 Jan; PP():. PubMed ID: 38241108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
    Zhang W; Yue X; Liu F; Chen Y; Tu S; Zhang X
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):101. PubMed ID: 29297371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the frequencies of drug side effects.
    Galeano D; Li S; Gerstein M; Paccanaro A
    Nat Commun; 2020 Sep; 11(1):4575. PubMed ID: 32917868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMMF: a hybrid multi-modal fusion framework for predicting drug side effect frequencies.
    Liu W; Zhang J; Qiao G; Bian J; Dong B; Li Y
    BMC Bioinformatics; 2024 May; 25(1):196. PubMed ID: 38769492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of drug side effects with transductive matrix co-completion.
    Liang X; Fu Y; Qu L; Zhang P; Chen Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and identification of drug similarity through drug side effects and indications data.
    Torab-Miandoab A; Poursheikh Asghari M; Hashemzadeh N; Ferdousi R
    BMC Med Inform Decis Mak; 2023 Feb; 23(1):35. PubMed ID: 36788528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepPSE: Prediction of polypharmacy side effects by fusing deep representation of drug pairs and attention mechanism.
    Lin S; Zhang G; Wei DQ; Xiong Y
    Comput Biol Med; 2022 Oct; 149():105984. PubMed ID: 35994933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neighborhood-regularization method leveraging multiview data for predicting the frequency of drug-side effects.
    Wang L; Sun C; Xu X; Li J; Zhang W
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37647657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding.
    Zheng L; Shi S; Lu M; Fang P; Pan Z; Zhang H; Zhou Z; Zhang H; Mou M; Huang S; Tao L; Xia W; Li H; Zeng Z; Zhang S; Chen Y; Li Z; Zhu F
    Genome Biol; 2024 Feb; 25(1):41. PubMed ID: 38303023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.