These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34718416)

  • 21. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity.
    Pan X; Zuallaert J; Wang X; Shen HB; Campos EP; Marushchak DO; De Neve W
    Bioinformatics; 2021 Jan; 36(21):5159-5168. PubMed ID: 32692832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Socket: a program for identifying and analysing coiled-coil motifs within protein structures.
    Walshaw J; Woolfson DN
    J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BindWeb: A web server for ligand binding residue and pocket prediction from protein structures.
    Xia Y; Xia C; Pan X; Shen HB
    Protein Sci; 2022 Dec; 31(12):e4462. PubMed ID: 36190332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain.
    Yang J; Shen HB
    Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima.
    Lupas A; Müller S; Goldie K; Engel AM; Engel A; Baumeister W
    J Mol Biol; 1995 Apr; 248(1):180-9. PubMed ID: 7731042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary patterns in coiled-coils.
    Surkont J; Pereira-Leal JB
    Genome Biol Evol; 2015 Jan; 7(2):545-56. PubMed ID: 25577198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction.
    Zhao Y; Liu Y
    PLoS One; 2021; 16(2):e0245982. PubMed ID: 33534819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.
    Strauss HM; Keller S
    Handb Exp Pharmacol; 2008; (186):461-82. PubMed ID: 18491064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information.
    Bartoli L; Fariselli P; Krogh A; Casadio R
    Bioinformatics; 2009 Nov; 25(21):2757-63. PubMed ID: 19744995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling.
    Rämisch S; Lizatović R; André I
    Proteins; 2015 Feb; 83(2):235-47. PubMed ID: 25402423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.