These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34718418)

  • 1. CpG Transformer for imputation of single-cell methylomes.
    De Waele G; Clauwaert J; Menschaert G; Waegeman W
    Bioinformatics; 2022 Jan; 38(3):597-603. PubMed ID: 34718418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GraphCpG: imputation of single-cell methylomes based on locus-aware neighboring subgraphs.
    Deng Y; Tang J; Zhang J; Zou J; Zhu Q; Fan S
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37647650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using local alignment to enhance single-cell bisulfite sequencing data efficiency.
    Wu P; Gao Y; Guo W; Zhu P
    Bioinformatics; 2019 Sep; 35(18):3273-3278. PubMed ID: 30859188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive evaluation of alignment software for reduced representation bisulfite sequencing data.
    Sun X; Han Y; Zhou L; Chen E; Lu B; Liu Y; Pan X; Cowley AW; Liang M; Wu Q; Lu Y; Liu P
    Bioinformatics; 2018 Aug; 34(16):2715-2723. PubMed ID: 29579198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MethRaFo: MeDIP-seq methylation estimate using a Random Forest Regressor.
    Ding J; Bar-Joseph Z
    Bioinformatics; 2017 Nov; 33(21):3477-3479. PubMed ID: 29036558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ViewBS: a powerful toolkit for visualization of high-throughput bisulfite sequencing data.
    Huang X; Zhang S; Li K; Thimmapuram J; Xie S; Wren J
    Bioinformatics; 2018 Feb; 34(4):708-709. PubMed ID: 29087450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MeDEStrand: an improved method to infer genome-wide absolute methylation levels from DNA enrichment data.
    Xu J; Liu S; Yin P; Bulun S; Dai Y
    BMC Bioinformatics; 2018 Dec; 19(1):540. PubMed ID: 30577750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imputing missing RNA-sequencing data from DNA methylation by using a transfer learning-based neural network.
    Zhou X; Chai H; Zhao H; Luo CH; Yang Y
    Gigascience; 2020 Jul; 9(7):. PubMed ID: 32649756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BioMethyl: an R package for biological interpretation of DNA methylation data.
    Wang Y; Franks JM; Whitfield ML; Cheng C
    Bioinformatics; 2019 Oct; 35(19):3635-3641. PubMed ID: 30799505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaMelia: imputation in single-cell methylomes based on local similarities between cells.
    Tang J; Zou J; Fan M; Tian Q; Zhang J; Fan S
    Bioinformatics; 2021 Jul; 37(13):1814-1820. PubMed ID: 33459762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods.
    Stevens M; Cheng JB; Li D; Xie M; Hong C; Maire CL; Ligon KL; Hirst M; Marra MA; Costello JF; Wang T
    Genome Res; 2013 Sep; 23(9):1541-53. PubMed ID: 23804401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes.
    Pavlovic M; Ray P; Pavlovic K; Kotamarti A; Chen M; Zhang MQ
    Bioinformatics; 2017 Oct; 33(19):2986-2994. PubMed ID: 28505334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.
    Zhu K; Anastassiou D
    Bioinformatics; 2020 Jun; 36(11):3588-3589. PubMed ID: 32108864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meffil: efficient normalization and analysis of very large DNA methylation datasets.
    Min JL; Hemani G; Davey Smith G; Relton C; Suderman M
    Bioinformatics; 2018 Dec; 34(23):3983-3989. PubMed ID: 29931280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor purity quantification by clonal DNA methylation signatures.
    Benelli M; Romagnoli D; Demichelis F
    Bioinformatics; 2018 May; 34(10):1642-1649. PubMed ID: 29325057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning.
    Ni P; Huang N; Zhang Z; Wang DP; Liang F; Miao Y; Xiao CL; Luo F; Wang J
    Bioinformatics; 2019 Nov; 35(22):4586-4595. PubMed ID: 30994904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missing value estimation methods for DNA methylation data.
    Di Lena P; Sala C; Prodi A; Nardini C
    Bioinformatics; 2019 Oct; 35(19):3786-3793. PubMed ID: 30796811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation.
    Li D; Zhang B; Xing X; Wang T
    Methods; 2015 Jan; 72():29-40. PubMed ID: 25448294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq).
    Clark SJ; Smallwood SA; Lee HJ; Krueger F; Reik W; Kelsey G
    Nat Protoc; 2017 Mar; 12(3):534-547. PubMed ID: 28182018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of methylation capture sequencing and Infinium MethylationEPIC array in peripheral blood mononuclear cells.
    Shu C; Zhang X; Aouizerat BE; Xu K
    Epigenetics Chromatin; 2020 Nov; 13(1):51. PubMed ID: 33228774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.