BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34718618)

  • 1. A cost-effective chart review sampling design to account for phenotyping error in electronic health records (EHR) data.
    Yin Z; Tong J; Chen Y; Hubbard RA; Tang CY
    J Am Med Inform Assoc; 2021 Dec; 29(1):52-61. PubMed ID: 34718618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An augmented estimation procedure for EHR-based association studies accounting for differential misclassification.
    Tong J; Huang J; Chubak J; Wang X; Moore JH; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2020 Feb; 27(2):244-253. PubMed ID: 31617899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAT: a Surrogate-Assisted Two-wave case boosting sampling method, with application to EHR-based association studies.
    Liu X; Chubak J; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2022 Apr; 29(5):918-927. PubMed ID: 34962283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weakly Semi-supervised phenotyping using Electronic Health records.
    Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C
    J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised calibration of noisy event risk (SCANER) with electronic health records.
    Hong C; Liang L; Yuan Q; Cho K; Liao KP; Pencina MJ; Christiani DC; Cai T
    J Biomed Inform; 2023 Aug; 144():104425. PubMed ID: 37331495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotype validation in electronic health records based genetic association studies.
    Wang L; Damrauer SM; Zhang H; Zhang AX; Xiao R; Moore JH; Chen J
    Genet Epidemiol; 2017 Dec; 41(8):790-800. PubMed ID: 29023970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflation of type I error rates due to differential misclassification in EHR-derived outcomes: Empirical illustration using breast cancer recurrence.
    Chen Y; Wang J; Chubak J; Hubbard RA
    Pharmacoepidemiol Drug Saf; 2019 Feb; 28(2):264-268. PubMed ID: 30375122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data.
    Huang J; Duan R; Hubbard RA; Wu Y; Moore JH; Xu H; Chen Y
    J Am Med Inform Assoc; 2018 Mar; 25(3):345-352. PubMed ID: 29206922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-reviewer electronic phenotyping validation in operational settings: Comparison of strategies and recommendations.
    Kukhareva P; Staes C; Noonan KW; Mueller HL; Warner P; Shields DE; Weeks H; Kawamoto K
    J Biomed Inform; 2017 Feb; 66():1-10. PubMed ID: 27956265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing Bias Due to Outcome Misclassification for Epidemiologic Studies Using EHR-derived Probabilistic Phenotypes.
    Hubbard RA; Tong J; Duan R; Chen Y
    Epidemiology; 2020 Jul; 31(4):542-550. PubMed ID: 32282406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiwave validation sampling for error-prone electronic health records.
    Shepherd BE; Han K; Chen T; Bian A; Pugh S; Duda SN; Lumley T; Heerman WJ; Shaw PA
    Biometrics; 2023 Sep; 79(3):2649-2663. PubMed ID: 35775996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Health Record Phenotypes for Identifying Patients with Late-Stage Disease: a Method for Research and Clinical Application.
    Ernecoff NC; Wessell KL; Hanson LC; Lee AM; Shea CM; Dusetzina SB; Weinberger M; Bennett AV
    J Gen Intern Med; 2019 Dec; 34(12):2818-2823. PubMed ID: 31396813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification.
    Beesley LJ; Mukherjee B
    Biometrics; 2022 Mar; 78(1):214-226. PubMed ID: 33179768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A maximum likelihood approach to electronic health record phenotyping using positive and unlabeled patients.
    Zhang L; Ding X; Ma Y; Muthu N; Ajmal I; Moore JH; Herman DS; Chen J
    J Am Med Inform Assoc; 2020 Jan; 27(1):119-126. PubMed ID: 31722396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable relevance ranking algorithm via semantic similarity assessment improves efficiency of medical chart review.
    Cai T; He Z; Hong C; Zhang Y; Ho YL; Honerlaw J; Geva A; Ayakulangara Panickan V; King A; Gagnon DR; Gaziano M; Cho K; Liao K; Cai T
    J Biomed Inform; 2022 Aug; 132():104109. PubMed ID: 35660521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance.
    Wei WQ; Teixeira PL; Mo H; Cronin RM; Warner JL; Denny JC
    J Am Med Inform Assoc; 2016 Apr; 23(e1):e20-7. PubMed ID: 26338219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised validation of multiple surrogate outcomes with application to electronic medical records phenotyping.
    Hong C; Liao KP; Cai T
    Biometrics; 2019 Mar; 75(1):78-89. PubMed ID: 30267536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A design of experiments approach to validation sampling for logistic regression modeling with error-prone medical records.
    Ouyang L; Apley DW; Mehrotra S
    J Am Med Inform Assoc; 2016 Apr; 23(e1):e71-8. PubMed ID: 26374705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.