BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 34718734)

  • 1. RPS: a comprehensive database of RNAs involved in liquid-liquid phase separation.
    Liu M; Li H; Luo X; Cai J; Chen T; Xie Y; Ren J; Zuo Z
    Nucleic Acids Res; 2022 Jan; 50(D1):D347-D355. PubMed ID: 34718734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAPhaSep: a resource of RNAs undergoing phase separation.
    Zhu H; Fu H; Cui T; Ning L; Shao H; Guo Y; Ke Y; Zheng J; Lin H; Wu X; Liu G; He J; Han X; Li W; Zhao X; Lu H; Wang D; Hu K; Shen X
    Nucleic Acids Res; 2022 Jan; 50(D1):D340-D346. PubMed ID: 34718740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MloDisDB: a manually curated database of the relations between membraneless organelles and diseases.
    Hou C; Xie H; Fu Y; Ma Y; Li T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MLOsMetaDB, a meta-database to centralize the information on liquid-liquid phase separation proteins and membraneless organelles.
    Orti F; Fernández ML; Marino-Buslje C
    Protein Sci; 2024 Jan; 33(1):e4858. PubMed ID: 38063081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes.
    Ning W; Guo Y; Lin S; Mei B; Wu Y; Jiang P; Tan X; Zhang W; Chen G; Peng D; Chu L; Xue Y
    Nucleic Acids Res; 2020 Jan; 48(D1):D288-D295. PubMed ID: 31691822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases?
    Huai Y; Mao W; Wang X; Lin X; Li Y; Chen Z; Qian A
    Biosci Trends; 2022 Dec; 16(6):389-404. PubMed ID: 36464283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAs, Phase Separation, and Membrane-Less Organelles: Are Post-Transcriptional Modifications Modulating Organelle Dynamics?
    Drino A; Schaefer MR
    Bioessays; 2018 Dec; 40(12):e1800085. PubMed ID: 30370622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant phase separation and cancer.
    Taniue K; Akimitsu N
    FEBS J; 2022 Jan; 289(1):17-39. PubMed ID: 33583140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Implications of Phase Separation in Cancer.
    Ren J; Zhang Z; Zong Z; Zhang L; Zhou F
    Adv Sci (Weinh); 2022 Nov; 9(31):e2202855. PubMed ID: 36117111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in
    Whitman BT; Wang Y; Murray CRA; Glover MJN; Owttrim GW
    Appl Environ Microbiol; 2023 Apr; 89(4):e0001523. PubMed ID: 36920190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-liquid phase separation: A new perspective to understanding aging and pathogenesis.
    Xia J
    Biosci Trends; 2022 Nov; 16(5):359-362. PubMed ID: 36288994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA in biological condensates.
    Cech TR
    RNA; 2022 Jan; 28(1):1-2. PubMed ID: 34903621
    [No Abstract]   [Full Text] [Related]  

  • 17. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro.
    Li Q; Peng X; Li Y; Tang W; Zhu J; Huang J; Qi Y; Zhang Z
    Nucleic Acids Res; 2020 Jan; 48(D1):D320-D327. PubMed ID: 31906602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Membraneless organelles and liquid-liquid phase separation – methods for their characterisation].
    Tarczewska A; Wycisk K; Sozańska N; Ożyhar A
    Postepy Biochem; 2020 Jun; 66(2):111-124. PubMed ID: 32700504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational resources for identifying and describing proteins driving liquid-liquid phase separation.
    Pancsa R; Vranken W; Mészáros B
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers.
    Farahi N; Lazar T; Wodak SJ; Tompa P; Pancsa R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.