These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34718794)

  • 1. Using continuous directed evolution to improve enzymes for plant applications.
    García-García JD; Van Gelder K; Joshi J; Bathe U; Leong BJ; Bruner SD; Liu CC; Hanson AD
    Plant Physiol; 2022 Feb; 188(2):971-983. PubMed ID: 34718794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suicide prevention for enzymes using continuous directed evolution.
    Dastmalchi M
    Plant Physiol; 2022 Feb; 188(2):924-925. PubMed ID: 34791471
    [No Abstract]   [Full Text] [Related]  

  • 3. Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study.
    García-García JD; Joshi J; Patterson JA; Trujillo-Rodriguez L; Reisch CR; Javanpour AA; Liu CC; Hanson AD
    Life (Basel); 2020 Sep; 10(9):. PubMed ID: 32899502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases.
    Gelder KV; Oliveira-Filho ER; García-García JD; Hu Y; Bruner SD; Hanson AD
    ACS Synth Biol; 2023 Apr; 12(4):963-970. PubMed ID: 36920242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems and Methods for Continuous Evolution of Enzymes.
    Chen A; Zhang XD; Đelmaš AĐ; Weitz DA; Milcic K
    Chemistry; 2024 Aug; 30(43):e202400880. PubMed ID: 38780896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Continuous Evolution of Proteins
    Zhong Z; Wong BG; Ravikumar A; Arzumanyan GA; Khalil AS; Liu CC
    ACS Synth Biol; 2020 Jun; 9(6):1270-1276. PubMed ID: 32374988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Compatibility and Extensibility of Orthogonal Replication.
    Javanpour AA; Liu CC
    ACS Synth Biol; 2019 Jun; 8(6):1249-1256. PubMed ID: 31095905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapidly Inducible Yeast Surface Display for Antibody Evolution with OrthoRep.
    Paulk AM; Williams RL; Liu CC
    ACS Synth Biol; 2024 Aug; 13(8):2629-2634. PubMed ID: 39052526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo continuous evolution of genes and pathways in yeast.
    Crook N; Abatemarco J; Sun J; Wagner JM; Schmitz A; Alper HS
    Nat Commun; 2016 Oct; 7():13051. PubMed ID: 27748457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting enzymes to improve their functionality in plants: why and how.
    Oliveira-Filho ER; Voiniciuc C; Hanson AD
    Biochem Soc Trans; 2023 Oct; 51(5):1957-1966. PubMed ID: 37787016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae in directed evolution: An efficient tool to improve enzymes.
    Gonzalez-Perez D; Garcia-Ruiz E; Alcalde M
    Bioeng Bugs; 2012; 3(3):172-7. PubMed ID: 22572788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in laboratory evolution of enzymes.
    Bershtein S; Tawfik DS
    Curr Opin Chem Biol; 2008 Apr; 12(2):151-8. PubMed ID: 18284924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.
    Si T; Zhao H
    Methods Mol Biol; 2016; 1470():183-98. PubMed ID: 27581294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A roadmap to directed enzyme evolution and screening systems for biotechnological applications.
    Martínez R; Schwaneberg U
    Biol Res; 2013; 46(4):395-405. PubMed ID: 24510142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of enzymes.
    Tamaki FK
    Emerg Top Life Sci; 2020 Sep; 4(2):119-127. PubMed ID: 32893862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds.
    Ravikumar A; Arzumanyan GA; Obadi MKA; Javanpour AA; Liu CC
    Cell; 2018 Dec; 175(7):1946-1957.e13. PubMed ID: 30415839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch.
    Michener JK; Smolke CD
    Metab Eng; 2012 Jul; 14(4):306-16. PubMed ID: 22554528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating continuous hypermutation with high-throughput screening for optimization of cis,cis-muconic acid production in yeast.
    Jensen ED; Ambri F; Bendtsen MB; Javanpour AA; Liu CC; Jensen MK; Keasling JD
    Microb Biotechnol; 2021 Nov; 14(6):2617-2626. PubMed ID: 33645919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general strategy for the evolution of bond-forming enzymes using yeast display.
    Chen I; Dorr BM; Liu DR
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11399-404. PubMed ID: 21697512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution: an approach to engineer enzymes.
    Kaur J; Sharma R
    Crit Rev Biotechnol; 2006; 26(3):165-99. PubMed ID: 16923533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.