BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34718973)

  • 1. Comprehensive study on identification of water inrush sources from deep mining roadway.
    Chen Y; Tang L; Zhu S
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19608-19623. PubMed ID: 34718973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water inrush characteristics and hazard effects during the transition from open-pit to underground mining: a case study.
    Zhang H; Zhang B; Xu N; Shi L; Wang H; Lin W; Ye Y
    R Soc Open Sci; 2019 Mar; 6(3):181402. PubMed ID: 31032002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of hydrochemical evolution in main discharge aquifers under mining disturbance and water source identification.
    Chen Y; Zhu S; Yang C; Xiao S
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):26784-26793. PubMed ID: 33501572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogeochemical Processes and Connection of Multi-Layer Groundwater System in Sunan Mining Area, Eastern China.
    Ju Q; Hu Y; Chen K; Liu Q
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination.
    Zhai M; Bai H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24361-24376. PubMed ID: 36342607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of mixing water source and response mechanism of radium and radon under mining in limestone of coal seam floor.
    Huang P; Gao H; Su Q; Zhang Y; Cui M; Chai S; Li Y; Jin Y
    Sci Total Environ; 2023 Jan; 857(Pt 3):159666. PubMed ID: 36302409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China.
    Huang H; Chen Z; Wang T; Zhang L; Zhou G; Sun B; Wang Y
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30055-30068. PubMed ID: 31414390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater chemical characteristic analysis and water source identification model study in Gubei coal mine, Northern Anhui Province, China.
    Jiang Q; Liu Q; Liu Y; Chai H; Zhu J
    Heliyon; 2024 Mar; 10(5):e26925. PubMed ID: 38486773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal modeling of water inrush spreading in mine roadway networks.
    Zhang X; Wu Q; Zhao Y; Liu S; Xu H
    Water Sci Technol; 2022 Feb; 85(3):872-886. PubMed ID: 35166707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of flow field based on stable isotope geochemical characteristics in deep groundwater.
    Chen LW; Gui HR; Yin XX
    Environ Monit Assess; 2011 Aug; 179(1-4):487-98. PubMed ID: 20963482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term groundwater geochemical evolution induced by coal mining activities-a case study of floor confined limestone aquifer in Yaoqiao Coal Mine, Jiangsu, China.
    Chen G; Sun Y; Xu Z; Yuan H; Yi H
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96252-96271. PubMed ID: 37566333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Conductivity Evaluation of Fault F22 Based on Comprehensive Analysis of Multisource Information.
    Han J; Wang F; Xie D; Zhang H; Hou Z; Jiang X
    ACS Omega; 2022 Oct; 7(42):37683-37693. PubMed ID: 36312402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study.
    Liu W; Han M; Meng X; Qin Y
    ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrochemical analysis and identification of open-pit mine water sources: a case study from the Dagushan iron mine in Northeast China.
    Liu Q; Zhang Z; Zhang B; Mu W; Zhang H; Li Y; Xu N
    Sci Rep; 2021 Nov; 11(1):23152. PubMed ID: 34848806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrochemical and geoelectrical investigation of the coastal shallow aquifers in El-Omayed area, Egypt.
    Atwia MG; Masoud AA
    Environ Monit Assess; 2013 Aug; 185(8):7065-80. PubMed ID: 23722640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.