BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34718973)

  • 21. Risk assessment of coal mine water inrush based on PCA-DBN.
    Zhang Y; Tang S; Shi K
    Sci Rep; 2022 Jan; 12(1):1370. PubMed ID: 35079120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures.
    Wen B; Zhou J; Zhou A; Liu C; Xie L
    Sci Total Environ; 2016 Nov; 569-570():114-122. PubMed ID: 27341112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of mine water inrush using laser-induced fluorescence spectroscopy combined with one-dimensional convolutional neural network.
    Hu F; Zhou M; Yan P; Li D; Lai W; Bian K; Dai R
    RSC Adv; 2019 Mar; 9(14):7673-7679. PubMed ID: 35521194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preventing water-inrush from floor in coal working face with paste-like backfill technology.
    Qu X; Shi L; Han J
    Sci Rep; 2023 Sep; 13(1):15947. PubMed ID: 37743362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mine water inrush source discrimination model based on KPCA-ISSA-KELM.
    Wang W; Cui X; Qi Y; Xue K; Liang R; Sun Z; Tao H
    PLoS One; 2024; 19(6):e0299476. PubMed ID: 38829898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-constraint and multi-objective optimization layout method for a mine water inrush monitoring network.
    Du Z; Wu Q; Zhao Y; Zhang X; Yao Y
    Sci Rep; 2023 Jul; 13(1):11817. PubMed ID: 37479742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogeochemical Characteristics and Water Quality Evaluation of Carboniferous Taiyuan Formation Limestone Water in Sulin Mining Area in Northern Anhui, China.
    Wang M; Gui H; Hu R; Zhao H; Li J; Yu H; Fang H
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31337104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Forecasting and prevention of water inrush during the excavation process of a diversion tunnel at the Jinping II Hydropower Station, China.
    Hou TX; Yang XG; Xing HG; Huang KX; Zhou JW
    Springerplus; 2016; 5(1):700. PubMed ID: 27347472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing.
    Yu R; Qian J; Liu L; Zha H; Li N
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of characteristic wavelengths using SPA for laser induced fluorescence spectroscopy of mine water inrush.
    Hu F; Zhou M; Yan P; Li D; Lai W; Zhu S; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():367-374. PubMed ID: 31055243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.
    Eang KE; Igarashi T; Fujinaga R; Kondo M; Tabelin CB
    Environ Monit Assess; 2018 Mar; 190(4):193. PubMed ID: 29511874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of the mining and aquifer interactions in complex geological conditions and its management.
    Huang W; Sui L; Wang Y; Zhang C; Jiang D; Cai X; Yang Z
    Sci Rep; 2023 Jun; 13(1):9462. PubMed ID: 37301932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Research on the Source Identification of Mine Water Inrush Based on LIF Technology and SIMCA Algorithm].
    Yan PC; Zhou MR; Liu QM; Zhang KY; He CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):243-7. PubMed ID: 27228775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Destruction processes of mining on water environment in the mining area combining isotopic and hydrochemical tracer.
    Yang Y; Guo T; Jiao W
    Environ Pollut; 2018 Jun; 237():356-365. PubMed ID: 29501998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A non-linear flow model for the flow behavior of water inrush induced by the karst collapse column.
    Hou X; Shi W; Yang T
    RSC Adv; 2018 Jan; 8(3):1656-1665. PubMed ID: 35540924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of mining activities on evolution of water quality of karst waters in Midwestern Guizhou, China: evidences from hydrochemistry and isotopic composition.
    Li X; Wu P; Han Z; Zha X; Ye H; Qin Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1220-1230. PubMed ID: 29082473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research on the Source Identification of Mine Water Inrush Based on LIF Technology and PLS-DA Algorithm].
    Yan PC; Zhou MR; Liu QM; Wang R; Liu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2858-62. PubMed ID: 30084615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation on the Risk of Water Inrush Due to Roof Bed Separation Based on Improved Set Pair Analysis-Variable Fuzzy Sets.
    Li X; Zhang W; Wang X; Wang Z; Pang C
    ACS Omega; 2022 Mar; 7(11):9430-9442. PubMed ID: 35350366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental behaviors of PAHs in Ordovician limestone water of Fengfeng coal mining area in China.
    Hao C; Huang Y; Ma D; Fan X; He P; Sun W
    Environ Monit Assess; 2018 Nov; 190(12):701. PubMed ID: 30406340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved risk zoning method of bed-separation water inrush in underground coal mines: a case study in Ningxia, China.
    Li L; Li W; Zhou S; He J; Chen W; Wang Q
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57518-57528. PubMed ID: 36964810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.