These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34719069)

  • 1. The effect of charged residue substitutions on the thermodynamics of protein-surface interactions.
    Ortega G; Aguilar MA; Gautam BK; Plaxco KW
    Protein Sci; 2021 Dec; 30(12):2408-2417. PubMed ID: 34719069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Attachment Enhances the Thermodynamic Stability of Protein L.
    Ortega G; Kurnik M; Dauphin-Ducharme P; Li H; Arroyo-Currás N; Caceres A; Plaxco KW
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1714-1718. PubMed ID: 30549169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein crystals and charged surfaces: interactions and heterogeneous nucleation.
    Sear RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061907. PubMed ID: 16241261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative measurements of protein-surface interaction thermodynamics.
    Kurnik M; Ortega G; Dauphin-Ducharme P; Li H; Caceres A; Plaxco KW
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8352-8357. PubMed ID: 30061388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Measurement of Surface Charge Effects on the Stability of a Surface-Bound Biopolymer.
    Watkins HM; Ricci F; Plaxco KW
    Langmuir; 2018 Dec; 34(49):14993-14999. PubMed ID: 29972737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropic and electrostatic effects on the folding free energy of a surface-attached biomolecule: an experimental and theoretical study.
    Watkins HM; Vallée-Bélisle A; Ricci F; Makarov DE; Plaxco KW
    J Am Chem Soc; 2012 Feb; 134(4):2120-6. PubMed ID: 22239220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attachment of Proteins to a Hydroxyl-Terminated Surface Eliminates the Stabilizing Effects of Polyols.
    Ortega G; Kurnik M; Gautam BK; Plaxco KW
    J Am Chem Soc; 2020 Sep; 142(36):15349-15354. PubMed ID: 32786756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis.
    Gitlin I; Carbeck JD; Whitesides GM
    Angew Chem Int Ed Engl; 2006 May; 45(19):3022-60. PubMed ID: 16619322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI
    Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge sequence coding in statistical modeling of unfolded proteins.
    Kundrotas PJ; Karshikoff A
    Biochim Biophys Acta; 2004 Oct; 1702(1):1-8. PubMed ID: 15450845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.
    Tsai MY; Zheng W; Balamurugan D; Schafer NP; Kim BL; Cheung MS; Wolynes PG
    Protein Sci; 2016 Jan; 25(1):255-69. PubMed ID: 26183799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the extra n-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli.
    Chaudhuri TK; Horii K; Yoda T; Arai M; Nagata S; Terada TP; Uchiyama H; Ikura T; Tsumoto K; Kataoka H; Matsushima M; Kuwajima K; Kumagai I
    J Mol Biol; 1999 Jan; 285(3):1179-94. PubMed ID: 9887272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatics introduce a trade-off between mesophilic stability and adaptation in halophilic proteins.
    Herrero-Alfonso P; Pejenaute A; Millet O; Ortega-Quintanilla G
    Protein Sci; 2024 Jun; 33(6):e5003. PubMed ID: 38747380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of electrostatic interactions in protein folding with the use of protein charge ladders.
    Negin RS; Carbeck JD
    J Am Chem Soc; 2002 Mar; 124(12):2911-6. PubMed ID: 11902881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dramatic stabilization of an SH3 domain by a single substitution: roles of the folded and unfolded states.
    Mok YK; Elisseeva EL; Davidson AR; Forman-Kay JD
    J Mol Biol; 2001 Mar; 307(3):913-28. PubMed ID: 11273710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation.
    Zhou HX; Pang X
    Chem Rev; 2018 Feb; 118(4):1691-1741. PubMed ID: 29319301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic consequences of native state optimization of surface-exposed electrostatic interactions in the Fyn SH3 domain.
    Zarrine-Afsar A; Zhang Z; Schweiker KL; Makhatadze GI; Davidson AR; Chan HS
    Proteins; 2012 Mar; 80(3):858-70. PubMed ID: 22161863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a better understanding of the specificity of protein-protein interaction.
    Kysilka J; Vondrášek J
    J Mol Recognit; 2012 Nov; 25(11):604-15. PubMed ID: 23108620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-amino acid interaction energies in three-dimensional-lattice Monte Carlo simulations of a model 27-mer protein: Folding thermodynamics and kinetics.
    Leonhard K; Prausnitz JM; Radke CJ
    Protein Sci; 2004 Feb; 13(2):358-69. PubMed ID: 14739322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.