These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34719590)

  • 1. A Method for Measuring the Surface Free Energy of Topical Semi-solid Dosage Forms.
    Hashizaki K; Hoshii Y; Ikeuchi K; Imai M; Taguchi H; Goto Y; Fujii M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1083-1087. PubMed ID: 34719590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Comparison of Surface Free Energy of Human, Yucatan Micropig, and Hairless Mouse Skins and Influence of Surfactant on Surface Free Energy of the Skin.
    Fujii M; Kato K; Imai M; Kuwabara H; Awano M; Hashizaki K; Taguchi H
    Biol Pharm Bull; 2019 Feb; 42(2):295-298. PubMed ID: 30504641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant.
    Youssef W; Wickett RR; Hoath SB
    Skin Res Technol; 2001 Feb; 7(1):10-7. PubMed ID: 11301635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Prediction of Wettability and Adhesion of Lotion to Skin Based on the OWRK Method].
    Hashizaki K; Sunaga K; Oda Y; Bashuda M; Imai M; Goto Y; Taguchi H; Saito Y; Fujii M
    Yakugaku Zasshi; 2019; 139(4):635-640. PubMed ID: 30930399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol for determining the surface free energy of dental materials.
    Combe EC; Owen BA; Hodges JS
    Dent Mater; 2004 Mar; 20(3):262-8. PubMed ID: 15209231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of Aceria litchii (Keifer) infestation on the surface properties of litchi leaf hosts.
    Song Q; Zheng J; Chen S; Lan Y; Li H; Zeng L; Yue X
    Pest Manag Sci; 2024 Jun; 80(6):2647-2657. PubMed ID: 38394076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus.
    Peršin Fratnik Z; Plohl O; Kokol V; Fras Zemljič L
    J Funct Biomater; 2023 Apr; 14(4):. PubMed ID: 37103322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy.
    Zhang Z; Wang W; Korpacz AN; Dufour CR; Weiland ZJ; Lambert CR; Timko MT
    Langmuir; 2019 Sep; 35(38):12317-12325. PubMed ID: 31433195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations.
    Cappelletti G; Ardizzone S; Meroni D; Soliveri G; Ceotto M; Biaggi C; Benaglia M; Raimondi L
    J Colloid Interface Sci; 2013 Jan; 389(1):284-91. PubMed ID: 23041024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-Liquid-Liquid Wettability of Surfactant-Oil-Water Systems and Its Prediction around the Phase Inversion Point.
    Stammitti-Scarpone A; Acosta EJ
    Langmuir; 2019 Mar; 35(12):4305-4318. PubMed ID: 30821467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing contact angle measurements and surface tension assessments of solid surfaces.
    Cwikel D; Zhao Q; Liu C; Su X; Marmur A
    Langmuir; 2010 Oct; 26(19):15289-94. PubMed ID: 20815356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis.
    Chibowski EJ
    Adv Colloid Interface Sci; 2005 May; 113(2-3):121-31. PubMed ID: 15935143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.
    Schlisske S; Held M; Rödlmeier T; Menghi S; Fuchs K; Ruscello M; Morfa AJ; Lemmer U; Hernandez-Sosa G
    Langmuir; 2018 May; 34(21):5964-5970. PubMed ID: 29718677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet granulation end point prediction using dimensionless numbers in a mixer torque rheometer: Relationship between capillary and Weber numbers and the optimal wet mass consistency.
    Ly A; Esma Achouri I; Gosselin R; Abatzoglou N
    Int J Pharm; 2021 Aug; 605():120823. PubMed ID: 34171431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Surface Wettability of Mineral Rock Particles by an Improved Washburn Method.
    Wang Z; Chu Y; Zhao G; Yin Z; Kuang T; Yan F; Zhang L; Zhang L
    ACS Omega; 2023 May; 8(17):15721-15729. PubMed ID: 37151559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling liquid penetration into porous materials based on substrate and liquid surface energies.
    Waldner C; Hirn U
    J Colloid Interface Sci; 2023 Jun; 640():445-455. PubMed ID: 36870220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin critical surface tension: A way to assess the skin wettability quantitatively.
    Khyat AE; Mavon A; Leduc M; Agache P; Humbert P
    Skin Res Technol; 1996 May; 2(2):91-6. PubMed ID: 27327225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.