BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34719851)

  • 21. NIR II-Excited and pH-Responsive Ultrasmall Nanoplatform for Deep Optical Tissue and Drug Delivery Penetration and Effective Cancer Chemophototherapy.
    Zhu L; Gao D; Xie L; Dai Y; Zhao Q
    Mol Pharm; 2020 Oct; 17(10):3720-3729. PubMed ID: 32633977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy.
    Ying M; Li Q; Wu J; Jiang Y; Xu Z; Ma M; Xu G
    Front Pharmacol; 2021; 12():779591. PubMed ID: 35126119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Ultrasmall Biocompatible CuS@BSA Nanoparticle and Its Photothermal Effects.
    Wan X; Liu M; Ma M; Chen D; Wu N; Li L; Li Z; Lin G; Wang X; Xu G
    Front Pharmacol; 2019; 10():141. PubMed ID: 30863310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NIR-II xanthene dyes with structure-inherent bacterial targeting for efficient photothermal and broad-spectrum antibacterial therapy.
    Zhang C; Wu J; Liu W; Zhang W; Lee CS; Wang P
    Acta Biomater; 2023 Mar; 159():247-258. PubMed ID: 36724864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatible tumor-targeting nanocomposites based on CuS for tumor imaging and photothermal therapy.
    Liang L; Peng S; Yuan Z; Wei C; He Y; Zheng J; Gu Y; Chen H
    RSC Adv; 2018 Feb; 8(11):6013-6026. PubMed ID: 35539596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide.
    Neelgund GM; Oki A; Bandara S; Carson L
    J Mater Chem B; 2021 Feb; 9(7):1792-1803. PubMed ID: 33393530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis.
    Shi H; Yan R; Wu L; Sun Y; Liu S; Zhou Z; He J; Ye D
    Acta Biomater; 2018 May; 72():256-265. PubMed ID: 29588255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomineralization of Versatile CuS/Gd2 O3 Hybrid Nanoparticles for MR Imaging and Antitumor Photothermal Chemotherapy.
    Zhao HX; Wang H; Zou Q; Sun SK; Yu C; Zhang X; Fu YY
    Chem Asian J; 2016 Sep; 11(17):2458-69. PubMed ID: 27428708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NIR laser-conjugated glutathione-coated Mn-doped CuS nanoprisms as photothermal agent for cancer treatment.
    Muhsen MM; Al-Jawad SMH; Taha AA
    Lasers Med Sci; 2022 Dec; 38(1):15. PubMed ID: 36550257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasmall hybrid protein-copper sulfide nanoparticles for targeted photoacoustic imaging of orthotopic hepatocellular carcinoma with a high signal-to-noise ratio.
    Yan H; Chen J; Li Y; Bai Y; Wu Y; Sheng Z; Song L; Liu C; Zhang H
    Biomater Sci; 2018 Dec; 7(1):92-103. PubMed ID: 30358774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-infrared responsive sulfur vacancy-rich CuS nanosheets for efficient antibacterial activity via synergistic photothermal and photodynamic pathways.
    Mo S; Song Y; Lin M; Wang J; Zhang Z; Sun J; Guo D; Liu L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2896-2906. PubMed ID: 34785058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vacancy-Modulated of CuS for Highly Antibacterial Efficiency via Photothermal/Photodynamic Synergetic Therapy.
    Zhang Z; Wen J; Zhang J; Guo D; Zhang Q
    Adv Healthc Mater; 2023 Jan; 12(1):e2201746. PubMed ID: 36303519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration.
    Xiao Y; Peng J; Liu Q; Chen L; Shi K; Han R; Yang Q; Zhong L; Zha R; Qu Y; Qian Z
    Theranostics; 2020; 10(4):1500-1513. PubMed ID: 32042318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy.
    Jiang W; Zhang H; Wu J; Zhai G; Li Z; Luan Y; Garg S
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34513-34523. PubMed ID: 30215253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Platinum Nanoparticles Regulated V
    He X; Lv Y; Lin Y; Yu H; Zhang Y; Tong Y; Zhang C
    Adv Mater; 2024 Jun; 36(25):e2400366. PubMed ID: 38469896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vivo and In Vitro Biocompatibility Study of CuS Nanoparticles: Photosensitizer for Glioblastoma Photothermal Therapy.
    Li Y; Yang Z; Jalil AT; Saleh MM; Wu B
    Appl Biochem Biotechnol; 2023 Jul; 195(7):4084-4095. PubMed ID: 36652089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifunctional Near-Infrared Dye IR-817 Encapsulated in Albumin Nanoparticles for Enhanced Imaging and Photothermal Therapy in Melanoma.
    Wang J; Liao H; Ban J; Li S; Xiong X; He Q; Shi X; Shen H; Yang S; Sun C; Liu L
    Int J Nanomedicine; 2023; 18():4949-4967. PubMed ID: 37693889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile synthesis of monodisperse chromogenic amylose-iodine nanoparticles as an efficient broad-spectrum antibacterial agent.
    Sun Y; Wang X; Fan L; Xie X; Miao Z; Ma Y; He T; Zha Z
    J Mater Chem B; 2020 Apr; 8(15):3010-3015. PubMed ID: 32201872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma.
    Cai H; Dai X; Guo X; Zhang L; Cao K; Yan F; Ji B; Liu Y
    Acta Biomater; 2021 Jun; 127():276-286. PubMed ID: 33812073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatible BSA-Ag
    Zhao J; Zhang Q; Liu W; Shan G; Wang X
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112295. PubMed ID: 34952286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.