These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34719921)

  • 21. Effects of
    Zhang YX; Wu CH; Chang KM; Chen YM; Xu N; Tsai KC
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4069-4072. PubMed ID: 31968422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.
    Xu W; Dou J; Zhao J; Tan H; Ye J; Tange M; Gao W; Xu W; Zhang X; Guo W; Ma C; Okazaki T; Zhang K; Cui Z
    Nanoscale; 2016 Feb; 8(8):4588-98. PubMed ID: 26847814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Performance P-Channel Tin Halide Perovskite Thin Film Transistor Utilizing a 2D-3D Core-Shell Structure.
    Kim J; Shiah YS; Sim K; Iimura S; Abe K; Tsuji M; Sasase M; Hosono H
    Adv Sci (Weinh); 2022 Feb; 9(5):e2104993. PubMed ID: 34927379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Electrical Performance and Stability of Solution-Processed Thin-Film Transistors with In
    Li S; Zhang X; Zhang P; Song G; Yuan L
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remarkably High Hole Mobility Metal-Oxide Thin-Film Transistors.
    Shih CW; Chin A; Lu CF; Su WF
    Sci Rep; 2018 Jan; 8(1):889. PubMed ID: 29343726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.
    Song YH; Ahn SJ; Kim MW; Lee JO; Hwang CS; Pi JE; Ko SD; Choi KW; Park SH; Yoon JB
    Small; 2015 Mar; 11(12):1390-5. PubMed ID: 25418881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application.
    Kim HY; Jung EA; Mun G; Agbenyeke RE; Park BK; Park JS; Son SU; Jeon DJ; Park SK; Chung TM; Han JH
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26924-26931. PubMed ID: 27673338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-mobility hydrogenated polycrystalline In
    Magari Y; Kataoka T; Yeh W; Furuta M
    Nat Commun; 2022 Feb; 13(1):1078. PubMed ID: 35228522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching Enhancement via a Back-Channel Phase-Controlling Layer for p-Type Copper Oxide Thin-Film Transistors.
    Min WK; Park SP; Kim HJ; Lee JH; Park K; Kim D; Kim KW; Kim HJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24929-24939. PubMed ID: 32390437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect.
    Liang K; Li D; Ren H; Zhao M; Wang H; Ding M; Xu G; Zhao X; Long S; Zhu S; Sheng P; Li W; Lin X; Zhu B
    Nanomicro Lett; 2021 Aug; 13(1):164. PubMed ID: 34342729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promotion of Processability in a p-Type Thin-Film Transistor Using a Se-Te Alloying Channel Layer.
    Choi K; Nam S; Kim YH; Oh H; Kim I; Lee K; Cho SH
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38668751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer.
    Yen TJ; Chin A; Gritsenko V
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully-Solution-Processed Enhancement-Mode Complementary Metal-Oxide-Semiconductor Carbon Nanotube Thin Film Transistors Based on BiI
    Li M; Fang Y; Shao S; Wang X; Chen Z; Li J; Gu W; Yang W; Xu W; Wang H; Zhao J
    Small; 2023 May; 19(20):e2207311. PubMed ID: 36782084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxide Thin-Film Electronics using All-MXene Electrical Contacts.
    Wang Z; Kim H; Alshareef HN
    Adv Mater; 2018 Apr; 30(15):e1706656. PubMed ID: 29473236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the SnO2 based thin film transistors with Ga, In and Hf doping.
    Shin SY; Moon YK; Kim WS; Lee SH; Park JW
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5459-63. PubMed ID: 22966590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode.
    Huang G; Duan L; Dong G; Zhang D; Qiu Y
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20786-94. PubMed ID: 25375760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Performance Thin-Film Transistors of Quaternary Indium-Zinc-Tin Oxide Films Grown by Atomic Layer Deposition.
    Baek IH; Pyeon JJ; Han SH; Lee GY; Choi BJ; Han JH; Chung TM; Hwang CS; Kim SK
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14892-14901. PubMed ID: 30945837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.
    Jeong YJ; An TK; Yun DJ; Kim LH; Park S; Kim Y; Nam S; Lee KH; Kim SH; Jang J; Park CE
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5499-508. PubMed ID: 26840992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully solution-processed low-voltage aqueous In2O3 thin-film transistors using an ultrathin ZrO(x) dielectric.
    Liu A; Liu GX; Zhu HH; Xu F; Fortunato E; Martins R; Shan FK
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17364-9. PubMed ID: 25285983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floating Ni Capping for High-Mobility p-Channel SnO Thin-Film Transistors.
    Shin MG; Bae KH; Cha HS; Jeong HS; Kim DH; Kwon HI
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.