These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34719929)

  • 1. pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.
    Rodrigues CHM; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Nov; 61(11):5438-5445. PubMed ID: 34719929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties.
    Al-Jarf R; de Sá AGC; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Jul; 61(7):3314-3322. PubMed ID: 34213323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures.
    Velloso JPL; Ascher DB; Pires DEV
    Bioinform Adv; 2021; 1(1):vbab031. PubMed ID: 34901870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions.
    Rodrigues CHM; Pires DEV; Ascher DB
    Nucleic Acids Res; 2021 Jul; 49(W1):W417-W424. PubMed ID: 33893812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function.
    Myung Y; Pires DEV; Ascher DB
    Bioinformatics; 2022 Jan; 38(4):1141-1143. PubMed ID: 34734992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning.
    Zhou Y; Myung Y; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2024 Jul; 52(W1):W207-W214. PubMed ID: 38783112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. kinCSM: Using graph-based signatures to predict small molecule CDK2 inhibitors.
    Zhou Y; Al-Jarf R; Alavi A; Nguyen TB; Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2022 Nov; 31(11):e4453. PubMed ID: 36305769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. piscesCSM: prediction of anticancer synergistic drug combinations.
    AlJarf R; Rodrigues CHM; Myung Y; Pires DEV; Ascher DB
    J Cheminform; 2024 Jul; 16(1):81. PubMed ID: 39030592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSM-Potential: mapping protein interactions and biological ligands in 3D space using geometric deep learning.
    Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2022 Jul; 50(W1):W204-W209. PubMed ID: 35609999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions.
    Rodrigues CHM; Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2019 Jul; 47(W1):W338-W344. PubMed ID: 31114883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mCSM-AB2: guiding rational antibody design using graph-based signatures.
    Myung Y; Rodrigues CHM; Ascher DB; Pires DEV
    Bioinformatics; 2020 Mar; 36(5):1453-1459. PubMed ID: 31665262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mmCSM-AB: guiding rational antibody engineering through multiple point mutations.
    Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W125-W131. PubMed ID: 32432715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mycoCSM: Using Graph-Based Signatures to Identify Safe Potent Hits against Mycobacteria.
    Pires DEV; Ascher DB
    J Chem Inf Model; 2020 Jul; 60(7):3450-3456. PubMed ID: 32615035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods.
    Reynès C; Host H; Camproux AC; Laconde G; Leroux F; Mazars A; Deprez B; Fahraeus R; Villoutreix BO; Sperandio O
    PLoS Comput Biol; 2010 Mar; 6(3):e1000695. PubMed ID: 20221258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mmCSM-NA: accurately predicting effects of single and multiple mutations on protein-nucleic acid binding affinity.
    Nguyen TB; Myung Y; de Sá AGC; Pires DEV; Ascher DB
    NAR Genom Bioinform; 2021 Dec; 3(4):lqab109. PubMed ID: 34805992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations.
    Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2021 Jan; 30(1):60-69. PubMed ID: 32881105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided machine learning prediction of drug resistance mutations in Abelson 1 kinase.
    Zhou Y; Portelli S; Pat M; Rodrigues CHM; Nguyen TB; Pires DEV; Ascher DB
    Comput Struct Biotechnol J; 2021; 19():5381-5391. PubMed ID: 34667533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mCSM-membrane: predicting the effects of mutations on transmembrane proteins.
    Pires DEV; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W147-W153. PubMed ID: 32469063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinact: a computational approach for predicting activating missense mutations in protein kinases.
    Rodrigues CH; Ascher DB; Pires DE
    Nucleic Acids Res; 2018 Jul; 46(W1):W127-W132. PubMed ID: 29788456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. toxCSM: comprehensive prediction of small molecule toxicity profiles.
    de Sá AGC; Long Y; Portelli S; Pires DEV; Ascher DB
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35998885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.