These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface. Burmistrov SN; Dubovskii LB; Tsymbalenko VL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051606. PubMed ID: 19518466 [TBL] [Abstract][Full Text] [Related]
7. Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers. Lapuerta V; Mancebo FJ; Vega JM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016318. PubMed ID: 11461402 [TBL] [Abstract][Full Text] [Related]
8. Some peculiar features of hydrodynamic instability development. Meshkov E Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120288. PubMed ID: 24146012 [TBL] [Abstract][Full Text] [Related]
9. Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability. Wei Y; Li Y; Wang Z; Yang H; Zhu Z; Qian Y; Luo KH Phys Rev E; 2022 Jan; 105(1-2):015103. PubMed ID: 35193283 [TBL] [Abstract][Full Text] [Related]
10. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension. Garnier J; Cherfils-Clérouin C; Holstein PA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897 [TBL] [Abstract][Full Text] [Related]
11. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
12. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach. Poujade O; Peybernes M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469 [TBL] [Abstract][Full Text] [Related]
13. Kinetic theoretical approach to turbulence in variable-density incompressible, statistically inhomogeneous fluids. Hazak G; Elbaz Y; Zalesak S; Wygoda N; Schmitt AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026314. PubMed ID: 20365658 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Livescu D Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007 [TBL] [Abstract][Full Text] [Related]
15. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]
16. Incompressible Rayleigh-Taylor mixing in circular and spherical geometries. Boffetta G; Musacchio S Phys Rev E; 2022 Feb; 105(2-2):025104. PubMed ID: 35291134 [TBL] [Abstract][Full Text] [Related]
17. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
18. The Inhibition of the Rayleigh-Taylor Instability by Rotation. Baldwin KA; Scase MM; Hill RJ Sci Rep; 2015 Jul; 5():11706. PubMed ID: 26130005 [TBL] [Abstract][Full Text] [Related]
19. Dimensional effects in Rayleigh-Taylor mixing. Boffetta G; Musacchio S Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210084. PubMed ID: 35094565 [TBL] [Abstract][Full Text] [Related]