These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34720113)

  • 1. A New Approach to the Rayleigh-Taylor Instability.
    Gebhard B; Kolumbán JJ; Székelyhidi L
    Arch Ration Mech Anal; 2021; 241(3):1243-1280. PubMed ID: 34720113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rayleigh-Taylor instability and vortex rings in coupled Gross-Pitaevskii equations.
    Sakaguchi H; Chono H
    Phys Rev E; 2017 Nov; 96(5-1):052222. PubMed ID: 29347763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions.
    Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A
    Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonideal Rayleigh-Taylor mixing.
    Lim H; Iwerks J; Glimm J; Sharp DH
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12786-92. PubMed ID: 20615983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface.
    Burmistrov SN; Dubovskii LB; Tsymbalenko VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051606. PubMed ID: 19518466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers.
    Lapuerta V; Mancebo FJ; Vega JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016318. PubMed ID: 11461402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some peculiar features of hydrodynamic instability development.
    Meshkov E
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120288. PubMed ID: 24146012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability.
    Wei Y; Li Y; Wang Z; Yang H; Zhu Z; Qian Y; Luo KH
    Phys Rev E; 2022 Jan; 105(1-2):015103. PubMed ID: 35193283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension.
    Garnier J; Cherfils-Clérouin C; Holstein PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic theoretical approach to turbulence in variable-density incompressible, statistically inhomogeneous fluids.
    Hazak G; Elbaz Y; Zalesak S; Wygoda N; Schmitt AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026314. PubMed ID: 20365658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers.
    Liu W; Wang X; Liu X; Yu C; Fang M; Ye W
    Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incompressible Rayleigh-Taylor mixing in circular and spherical geometries.
    Boffetta G; Musacchio S
    Phys Rev E; 2022 Feb; 105(2-2):025104. PubMed ID: 35291134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Inhibition of the Rayleigh-Taylor Instability by Rotation.
    Baldwin KA; Scase MM; Hill RJ
    Sci Rep; 2015 Jul; 5():11706. PubMed ID: 26130005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimensional effects in Rayleigh-Taylor mixing.
    Boffetta G; Musacchio S
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210084. PubMed ID: 35094565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenomenology of Rayleigh-Taylor turbulence.
    Chertkov M
    Phys Rev Lett; 2003 Sep; 91(11):115001. PubMed ID: 14525432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.