BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34720362)

  • 1. Mathematical Modelling of Residual-Stress Based Volumetric Growth in Soft Matter.
    Huang R; Ogden RW; Penta R
    J Elast; 2021; 145(1-2):223-241. PubMed ID: 34720362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volumetric growth of soft tissues evaluated in the current configuration.
    Zhuan X; Luo XY
    Biomech Model Mechanobiol; 2022 Apr; 21(2):569-588. PubMed ID: 35044527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A relaxed growth modeling framework for controlling growth-induced residual stresses.
    Genet M
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():270-277. PubMed ID: 31831206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-modulated growth, residual stress, and vascular heterogeneity.
    Taber LA; Humphrey JD
    J Biomech Eng; 2001 Dec; 123(6):528-35. PubMed ID: 11783722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory.
    Mousavi SJ; Avril S
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1765-1777. PubMed ID: 28536892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic residual stresses in arteries.
    Sigaeva T; Sommer G; Holzapfel GA; Di Martino ES
    J R Soc Interface; 2019 Feb; 16(151):20190029. PubMed ID: 30958201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-dependent finite growth in soft elastic tissues.
    Rodriguez EK; Hoger A; McCulloch AD
    J Biomech; 1994 Apr; 27(4):455-67. PubMed ID: 8188726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the existence of elastic minimizers for initially stressed materials.
    Riccobelli D; Agosti A; Ciarletta P
    Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180074. PubMed ID: 30879420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the use of the "opening angle method" to enforce residual stresses in patient-specific arteries.
    Alastrué V; Peña E; Martínez MA; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1821-37. PubMed ID: 17638082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions.
    Rachev A
    J Biomech; 1997 Aug; 30(8):819-27. PubMed ID: 9239567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual Stress Estimates from Multi-cut Opening Angles of the Left Ventricle.
    Zhuan X; Luo X
    Cardiovasc Eng Technol; 2020 Aug; 11(4):381-393. PubMed ID: 32557186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Eulerian constitutive equations for modeling growth and residual stresses in arteries.
    Volokh KY
    Mech Chem Biosyst; 2005 Jun; 2(2):77-86. PubMed ID: 16783929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth, anisotropy, and residual stresses in arteries.
    Volokh KY; Lev Y
    Mech Chem Biosyst; 2005; 2(1):27-40. PubMed ID: 16708470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stresses in growing soft tissues.
    Volokh KY
    Acta Biomater; 2006 Sep; 2(5):493-504. PubMed ID: 16793355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficiencies in numerical models of anisotropic nonlinearly elastic materials.
    Ní Annaidh A; Destrade M; Gilchrist MD; Murphy JG
    Biomech Model Mechanobiol; 2013 Aug; 12(4):781-91. PubMed ID: 23011411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous growth-induced prestrain in the heart.
    Genet M; Rausch MK; Lee LC; Choy S; Zhao X; Kassab GS; Kozerke S; Guccione JM; Kuhl E
    J Biomech; 2015 Jul; 48(10):2080-9. PubMed ID: 25913241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.