BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34720652)

  • 1. Quantification of three-dimensional morphology of craniofacial mineralized tissue defects in Tgfbr2/Osx-Cre mice.
    Snider TN; Louie KW; Zuzo G; Ruellas ACO; Solem RC; Cevidanes LHS; Zhang H; Mishina Y
    Oral Sci Int; 2021 Sep; 18(3):193-202. PubMed ID: 34720652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.
    Ho TV; Iwata J; Ho HA; Grimes WC; Park S; Sanchez-Lara PA; Chai Y
    Dev Biol; 2015 Apr; 400(2):180-90. PubMed ID: 25722190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tgfbr2 is required in osterix expressing cells for postnatal skeletal development.
    Peters SB; Wang Y; Serra R
    Bone; 2017 Apr; 97():54-64. PubMed ID: 28043895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Genetic Variability of TGF-Beta Signaling Biomarkers in Major Craniofacial Syndromes.
    Yapijakis C; Davaria S; Gintoni I; Chrousos GP
    Adv Exp Med Biol; 2023; 1423():187-191. PubMed ID: 37525043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
    Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2014 Jan; 23(1):182-93. PubMed ID: 23975680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner.
    Zhao H; Oka K; Bringas P; Kaartinen V; Chai Y
    Dev Biol; 2008 Aug; 320(1):19-29. PubMed ID: 18572160
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Stanwick M; Barkley C; Serra R; Kruggel A; Webb A; Zhao Y; Pietrzak M; Ashman C; Staats A; Shahid S; Peters SB
    Front Cell Dev Biol; 2022; 10():834815. PubMed ID: 35265620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell autonomous requirement for TGF-beta signaling during odontoblast differentiation and dentin matrix formation.
    Oka S; Oka K; Xu X; Sasaki T; Bringas P; Chai Y
    Mech Dev; 2007 Jul; 124(6):409-15. PubMed ID: 17449229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.
    Parada C; Li J; Iwata J; Suzuki A; Chai Y
    Mol Cell Biol; 2013 Sep; 33(17):3482-93. PubMed ID: 23816882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J; Tung L; Urata M; Hacia JG; Pelikan R; Suzuki A; Ramenzoni L; Chaudhry O; Parada C; Sanchez-Lara PA; Chai Y
    J Biol Chem; 2012 Jan; 287(4):2353-63. PubMed ID: 22123828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.
    Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V
    J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-β Signaling Regulates Cementum Formation through Osterix Expression.
    Choi H; Ahn YH; Kim TH; Bae CH; Lee JC; You HK; Cho ES
    Sci Rep; 2016 May; 6():26046. PubMed ID: 27180803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.
    Foster BL; Ao M; Willoughby C; Soenjaya Y; Holm E; Lukashova L; Tran AB; Wimer HF; Zerfas PM; Nociti FH; Kantovitz KR; Quan BD; Sone ED; Goldberg HA; Somerman MJ
    Bone; 2015 Sep; 78():150-64. PubMed ID: 25963390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a Pathogenic
    Luo X; Deng S; Jiang Y; Wang X; Al-Raimi AMA; Wu L; Liu X; Song Y; Chen X; Zhu F
    Front Genet; 2020; 11():479. PubMed ID: 32528524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints.
    Seo HS; Serra R
    Dev Biol; 2007 Oct; 310(2):304-16. PubMed ID: 17822689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arthrogryposis as neonatal presentation of Loeys-Dietz syndrome due to a novel TGFBR2 mutation.
    Valenzuela I; Fernández-Alvarez P; Munell F; Sanchez-Montanez A; Giralt G; Vendrell T; Tizzano EF
    Eur J Med Genet; 2017 Jun; 60(6):303-307. PubMed ID: 28344185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional validation reveals the novel missense V419L variant in
    Cousin MA; Zimmermann MT; Mathison AJ; Blackburn PR; Boczek NJ; Oliver GR; Lomberk GA; Urrutia RA; Deyle DR; Klee EW
    Cold Spring Harb Mol Case Stud; 2017 Jul; 3(4):. PubMed ID: 28679693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth.
    Zhang Y; Ji D; Li L; Yang S; Zhang H; Duan X
    Theranostics; 2019; 9(5):1387-1400. PubMed ID: 30867839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loeys-Dietz syndrome type I and type II: clinical findings and novel mutations in two Italian patients.
    Drera B; Ritelli M; Zoppi N; Wischmeijer A; Gnoli M; Fattori R; Calzavara-Pinton PG; Barlati S; Colombi M
    Orphanet J Rare Dis; 2009 Nov; 4():24. PubMed ID: 19883511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.