These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 34720792)

  • 21. Advances in Energy Harvesting Technologies for Wearable Devices.
    Kang M; Yeo WH
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
    Hansen BJ; Liu Y; Yang R; Wang ZL
    ACS Nano; 2010 Jul; 4(7):3647-52. PubMed ID: 20507155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Tunable Resonance Cantilever for Cardiac Energy Harvesting.
    Secord TW; Audi MC
    Cardiovasc Eng Technol; 2019 Jun; 10(2):380-393. PubMed ID: 30710216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Far-field RF powering of implantable devices: safety considerations.
    Bercich RA; Duffy DR; Irazoqui PP
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2107-12. PubMed ID: 23412566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable and Biodegradable Batteries with High Energy and Power Density.
    Karami-Mosammam M; Danninger D; Schiller D; Kaltenbrunner M
    Adv Mater; 2022 Aug; 34(32):e2204457. PubMed ID: 35714220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radio-frequency energy harvesting for wearable sensors.
    Borges LM; Chávez-Santiago R; Barroca N; Velez FJ; Balasingham I
    Healthc Technol Lett; 2015 Feb; 2(1):22-7. PubMed ID: 26609400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.
    Dagdeviren C; Li Z; Wang ZL
    Annu Rev Biomed Eng; 2017 Jun; 19():85-108. PubMed ID: 28633564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless Power Transfer and Telemetry for Implantable Bioelectronics.
    Yoo S; Lee J; Joo H; Sunwoo SH; Kim S; Kim DH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100614. PubMed ID: 34075721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Harvesting Untethered Soft Electronic Devices.
    Kim KK; Choi J; Ko SH
    Adv Healthc Mater; 2021 Sep; 10(17):e2002286. PubMed ID: 33929767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics.
    Park S; Heo SW; Lee W; Inoue D; Jiang Z; Yu K; Jinno H; Hashizume D; Sekino M; Yokota T; Fukuda K; Tajima K; Someya T
    Nature; 2018 Sep; 561(7724):516-521. PubMed ID: 30258137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications.
    Turner BL; Senevirathne S; Kilgour K; McArt D; Biggs M; Menegatti S; Daniele MA
    Adv Healthc Mater; 2021 Sep; 10(17):e2100986. PubMed ID: 34235886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems.
    Cao Y; Figueroa J; Pastrana JJ; Li W; Chen Z; Wang ZL; Sepúlveda N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17400-17409. PubMed ID: 31002218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy storage: The future enabled by nanomaterials.
    Pomerantseva E; Bonaccorso F; Feng X; Cui Y; Gogotsi Y
    Science; 2019 Nov; 366(6468):. PubMed ID: 31753970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices.
    Dinis H; Colmiais I; Mendes PM
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wireless power transfer to deep-tissue microimplants.
    Ho JS; Yeh AJ; Neofytou E; Kim S; Tanabe Y; Patlolla B; Beygui RE; Poon AS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7974-9. PubMed ID: 24843161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free-Form and Deformable Energy Storage as a Forerunner to Next-Generation Smart Electronics.
    Kwak S; Kang J; Nam I; Yi J
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early History and Challenges of Implantable Electronics.
    Ko WH
    ACM J Emerg Technol Comput Syst; 2012 Jun; 8(2):8. PubMed ID: 24791159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Materials and Structures for Ingestible Electromechanical Medical Devices.
    Bettinger CJ
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):16946-16958. PubMed ID: 29999578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling and powering a fully implantable artificial pancreas refillable by ingestible pills.
    Ballardini G; Tamadon I; Guarnera D; Al-Haddad H; Iacovacci V; Mariottini F; Ricciardi S; Cucini A; Libera AD; Vistoli F; Menciassi A; Dario P; Cobelli C; Ricotti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-7. PubMed ID: 38083764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.