These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34720913)

  • 1. Measurement Method of Human Lower Limb Joint Range of Motion Through Human-Machine Interaction Based on Machine Vision.
    Wang X; Liu G; Feng Y; Li W; Niu J; Gan Z
    Front Neurorobot; 2021; 15():753924. PubMed ID: 34720913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():. PubMed ID: 29068644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
    Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J
    Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Gait Measurement System Using Laser Range Sensor Based on Lower-limb Rehabilitation Robot].
    Liu J; Guo S; Zheng L; Zhang Z
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Mar; 46(2):137-140. PubMed ID: 35411737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spring damping based control for a novel lower limb rehabilitation robot with active flexible training planning.
    Hu J; Meng Q; Zhu Y; Zhang X; Wu W; Yu H
    Technol Health Care; 2023; 31(2):565-578. PubMed ID: 36120745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent validity of a custom computer vision algorithm for measuring lumbar spine motion from RGB-D camera depth data.
    Ramos WC; Beange KHE; Graham RB
    Med Eng Phys; 2021 Oct; 96():22-28. PubMed ID: 34565549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation.
    Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H
    Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluating the use of machine learning in the assessment of joint angle using a single inertial sensor.
    Argent R; Drummond S; Remus A; O'Reilly M; Caulfield B
    J Rehabil Assist Technol Eng; 2019; 6():2055668319868544. PubMed ID: 31452927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy.
    Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and control of a bedside cable-driven lower-limb rehabilitation robot for bedridden individuals.
    Wang D; Li J; Jian Z; Su H; Wang H; Fang F
    Front Bioeng Biotechnol; 2023; 11():1321905. PubMed ID: 38076420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of knee joint rotation in the sagittal and axial plane on the measurement accuracy of coronal alignment of the lower limb.
    Moon HS; Choi CH; Jung M; Lee DY; Kim JH; Kim SH
    BMC Musculoskelet Disord; 2020 Jul; 21(1):470. PubMed ID: 32680484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.
    Tang S; Zhu Q; Chen W; Darwish W; Wu B; Hu H; Chen M
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training.
    Cai S; Chen Y; Huang S; Wu Y; Zheng H; Li X; Xie L
    Front Neurorobot; 2019; 13():31. PubMed ID: 31214010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint Calibration Method for Robot Measurement Systems.
    Wu L; Zang X; Ding G; Wang C; Zhang X; Liu Y; Zhao J
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.
    Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Gait Training of a Lower Limb Rehabilitation Robot Based on Human-Robot Interaction Force Measurement.
    Yu F; Liu Y; Wu Z; Tan M; Yu J
    Cyborg Bionic Syst; 2024; 5():0115. PubMed ID: 38912323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.