These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34721331)
1. The Trp-rich Antimicrobial Amphiphiles With Intramolecular Aromatic Interactions for the Treatment of Bacterial Infection. Wang Z; Li Q; Li J; Li J; Shang L; Chou S; Lyu Y; Shan A Front Microbiol; 2021; 12():733441. PubMed ID: 34721331 [TBL] [Abstract][Full Text] [Related]
2. The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Zhu Y; Akhtar MU; Li B; Chou S; Shao C; Li J; Shan A Acta Biomater; 2022 Nov; 153():557-572. PubMed ID: 36115654 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. Jiang S; Deslouches B; Chen C; Di ME; Di YP mBio; 2019 Apr; 10(2):. PubMed ID: 30967458 [TBL] [Abstract][Full Text] [Related]
4. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Răileanu M; Borlan R; Campu A; Janosi L; Turcu I; Focsan M; Bacalum M Int J Pharm; 2023 Jul; 642():123169. PubMed ID: 37356506 [TBL] [Abstract][Full Text] [Related]
5. Rational Framework for the Design of Trp- and Arg-Rich Peptide Antibiotics Against Multidrug-Resistant Bacteria. Xiang W; Clemenza P; Klousnitzer J; Chen J; Qin W; Tristram-Nagle S; Doi Y; Di YP; Deslouches B Front Microbiol; 2022; 13():889791. PubMed ID: 35694289 [TBL] [Abstract][Full Text] [Related]
6. PEP27-2, a Potent Antimicrobial Cell-Penetrating Peptide, Reduces Skin Abscess Formation during Kang HK; Park J; Seo CH; Park Y ACS Infect Dis; 2021 Sep; 7(9):2620-2636. PubMed ID: 34251811 [TBL] [Abstract][Full Text] [Related]
7. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Khara JS; Obuobi S; Wang Y; Hamilton MS; Robertson BD; Newton SM; Yang YY; Langford PR; Ee PLR Acta Biomater; 2017 Jul; 57():103-114. PubMed ID: 28457962 [TBL] [Abstract][Full Text] [Related]
8. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. Song X; Liu P; Liu X; Wang Y; Wei H; Zhang J; Yu L; Yan X; He Z Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112318. PubMed ID: 34474869 [TBL] [Abstract][Full Text] [Related]
9. Romo1-Derived Antimicrobial Peptide Is a New Antimicrobial Agent against Multidrug-Resistant Bacteria in a Murine Model of Sepsis. Lee HR; You DG; Kim HK; Sohn JW; Kim MJ; Park JK; Lee GY; Yoo YD mBio; 2020 Apr; 11(2):. PubMed ID: 32291307 [TBL] [Abstract][Full Text] [Related]
10. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Moghadam MT; Mojtahedi A; Moghaddam MM; Fasihi-Ramandi M; Mirnejad R Appl Microbiol Biotechnol; 2022 Jun; 106(11):3879-3893. PubMed ID: 35604438 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and anti-pseudomonal activity of new ß-Ala modified analogues of the antimicrobial peptide anoplin. Zhong C; Zhu Y; Zhu N; Liu T; Gou S; Zhang F; Yao J; Xie J; Ni J Int J Med Microbiol; 2020 Jul; 310(5):151433. PubMed ID: 32654770 [TBL] [Abstract][Full Text] [Related]
12. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Yang CH; Chen YC; Peng SY; Tsai AP; Lee TJ; Yen JH; Liou JW Sci Rep; 2018 Oct; 8(1):14602. PubMed ID: 30279591 [TBL] [Abstract][Full Text] [Related]
13. Bobde SS; Alsaab FM; Wang G; Van Hoek ML Front Microbiol; 2021; 12():715246. PubMed ID: 34867843 [TBL] [Abstract][Full Text] [Related]
14. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762 [TBL] [Abstract][Full Text] [Related]
15. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Zhong C; Zhu N; Zhu Y; Liu T; Gou S; Xie J; Yao J; Ni J Eur J Pharm Sci; 2020 Jan; 141():105123. PubMed ID: 31676352 [TBL] [Abstract][Full Text] [Related]
17. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Park KH; Nan YH; Park Y; Kim JI; Park IS; Hahm KS; Shin SY Biochim Biophys Acta; 2009 May; 1788(5):1193-203. PubMed ID: 19285481 [TBL] [Abstract][Full Text] [Related]
18. New Antimicrobial Peptides with Repeating Unit against Multidrug-Resistant Bacteria. Zhong C; Zhang F; Yao J; Zhu Y; Zhu N; Zhang J; Ouyang X; Zhang T; Li B; Xie J; Ni J ACS Infect Dis; 2021 Jun; 7(6):1619-1637. PubMed ID: 33829758 [TBL] [Abstract][Full Text] [Related]