BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34721370)

  • 1. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea.
    Liu LJ; Jiang Z; Wang P; Qin YL; Xu W; Wang Y; Liu SJ; Jiang CY
    Front Microbiol; 2021; 12():768283. PubMed ID: 34721370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiology and genetics of sulfur-oxidizing bacteria.
    Friedrich CG
    Adv Microb Physiol; 1998; 39():235-89. PubMed ID: 9328649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilic Sulfolobales.
    Zeldes BM; Loder AJ; Counts JA; Haque M; Widney KA; Keller LM; Albers SV; Kelly RM
    Environ Microbiol; 2019 Oct; 21(10):3696-3710. PubMed ID: 31188531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities.
    Urbieta MS; Rascovan N; Vázquez MP; Donati E
    BMC Genomics; 2017 Jun; 18(1):445. PubMed ID: 28587624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biology of thermoacidophilic archaea from the order Sulfolobales.
    Lewis AM; Recalde A; Bräsen C; Counts JA; Nussbaum P; Bost J; Schocke L; Shen L; Willard DJ; Quax TEF; Peeters E; Siebers B; Albers SV; Kelly RM
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33476388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.
    Kletzin A; Urich T; Müller F; Bandeiras TM; Gomes CM
    J Bioenerg Biomembr; 2004 Feb; 36(1):77-91. PubMed ID: 15168612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfide oxidation by members of the Sulfolobales.
    Fernandes-Martins MC; Colman DR; Boyd ES
    PNAS Nexus; 2024 Jun; 3(6):pgae201. PubMed ID: 38827816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfodiicoccus acidiphilus gen. nov., sp. nov., a sulfur-inhibited thermoacidophilic archaeon belonging to the order Sulfolobales isolated from a terrestrial acidic hot spring.
    Sakai HD; Kurosawa N
    Int J Syst Evol Microbiol; 2017 Jun; 67(6):1880-1886. PubMed ID: 28629504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent Evolution of a Promiscuous 3-Hydroxypropionyl-CoA Dehydratase/Crotonyl-CoA Hydratase in
    Liu L; Brown PC; Könneke M; Huber H; König S; Berg IA
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33472982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative metabolism of inorganic sulfur compounds by bacteria.
    Kelly DP; Shergill JK; Lu WP; Wood AP
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):95-107. PubMed ID: 9049021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.
    Auernik KS; Maezato Y; Blum PH; Kelly RM
    Appl Environ Microbiol; 2008 Feb; 74(3):682-92. PubMed ID: 18083856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake.
    Banciu H; Sorokin DY; Galinski EA; Muyzer G; Kleerebezem R; Kuenen JG
    Extremophiles; 2004 Aug; 8(4):325-34. PubMed ID: 15309564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.
    Ghosh W; Dam B
    FEMS Microbiol Rev; 2009 Nov; 33(6):999-1043. PubMed ID: 19645821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life in hot acid: a genome-based reassessment of the archaeal order Sulfolobales.
    Counts JA; Willard DJ; Kelly RM
    Environ Microbiol; 2021 Jul; 23(7):3568-3584. PubMed ID: 32776389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes.
    Auernik KS; Kelly RM
    Appl Environ Microbiol; 2008 Dec; 74(24):7723-32. PubMed ID: 18931292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.