BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

678 related articles for article (PubMed ID: 34721441)

  • 1. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities.
    Marchand T; Pinho S
    Front Immunol; 2021; 12():775128. PubMed ID: 34721441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential niche and Wnt requirements during acute myeloid leukemia progression.
    Lane SW; Wang YJ; Lo Celso C; Ragu C; Bullinger L; Sykes SM; Ferraro F; Shterental S; Lin CP; Gilliland DG; Scadden DT; Armstrong SA; Williams DA
    Blood; 2011 Sep; 118(10):2849-56. PubMed ID: 21765021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Hypoxic Bone Marrow Microenvironment in Acute Myeloid Leukemia and Future Therapeutic Opportunities.
    Bruno S; Mancini M; De Santis S; Monaldi C; Cavo M; Soverini S
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting BMP signaling in the bone marrow microenvironment of myeloid leukemia.
    Lefort S; Maguer-Satta V
    Biochem Soc Trans; 2020 Apr; 48(2):411-418. PubMed ID: 32167132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The leukemic stem cell niche: current concepts and therapeutic opportunities.
    Lane SW; Scadden DT; Gilliland DG
    Blood; 2009 Aug; 114(6):1150-7. PubMed ID: 19401558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia.
    Laverdière I; Boileau M; Neumann AL; Frison H; Mitchell A; Ng SWK; Wang JCY; Minden MD; Eppert K
    Blood Cancer J; 2018 Jun; 8(6):52. PubMed ID: 29921955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Microenvironment in Resistance to Therapy in AML.
    Tabe Y; Konopleva M
    Curr Hematol Malig Rep; 2015 Jun; 10(2):96-103. PubMed ID: 25921386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML.
    Vetrie D; Helgason GV; Copland M
    Nat Rev Cancer; 2020 Mar; 20(3):158-173. PubMed ID: 31907378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells.
    Pelosi E; Castelli G; Testa U
    Blood Cells Mol Dis; 2015 Dec; 55(4):336-46. PubMed ID: 26460257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities.
    O'Reilly E; Zeinabad HA; Szegezdi E
    Blood Rev; 2021 Nov; 50():100850. PubMed ID: 34049731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal and leukemic stem cell niches: insights and therapeutic opportunities.
    Schepers K; Campbell TB; Passegué E
    Cell Stem Cell; 2015 Mar; 16(3):254-67. PubMed ID: 25748932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia.
    Grenier JMP; Testut C; Fauriat C; Mancini SJC; Aurrand-Lions M
    Front Immunol; 2021; 12():756231. PubMed ID: 34867994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of hematopoietic and leukemic stem cells by the immune system.
    Riether C; Schürch CM; Ochsenbein AF
    Cell Death Differ; 2015 Feb; 22(2):187-98. PubMed ID: 24992931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.
    Hira VVV; Van Noorden CJF; Carraway HE; Maciejewski JP; Molenaar RJ
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):183-198. PubMed ID: 28363872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches.
    Thakral D; Gupta R; Khan A
    Stem Cell Rev Rep; 2022 Jun; 18(5):1756-1773. PubMed ID: 35412219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Gene Expression Analyses Reveal Distinct Self-Renewing and Proliferating Subsets in the Leukemia Stem Cell Compartment in Acute Myeloid Leukemia.
    Sachs K; Sarver AL; Noble-Orcutt KE; LaRue RS; Antony ML; Chang D; Lee Y; Navis CM; Hillesheim AL; Nykaza IR; Ha NA; Hansen CJ; Karadag FK; Bergerson RJ; Verneris MR; Meredith MM; Schomaker ML; Linden MA; Myers CL; Largaespada DA; Sachs Z
    Cancer Res; 2020 Feb; 80(3):458-470. PubMed ID: 31784425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translating leukemia stem cells into the clinical setting: Harmonizing the heterogeneity.
    Yanagisawa B; Ghiaur G; Smith BD; Jones RJ
    Exp Hematol; 2016 Dec; 44(12):1130-1137. PubMed ID: 27693555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutically targeting SELF-reinforcing leukemic niches in acute myeloid leukemia: A worthy endeavor?
    Bernasconi P; Farina M; Boni M; Dambruoso I; Calvello C
    Am J Hematol; 2016 May; 91(5):507-17. PubMed ID: 26822317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia.
    Li Q; Wang M; Liu L
    Biochem Pharmacol; 2023 Jun; 212():115539. PubMed ID: 37024061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niche displacement of human leukemic stem cells uniquely allows their competitive replacement with healthy HSPCs.
    Boyd AL; Campbell CJ; Hopkins CI; Fiebig-Comyn A; Russell J; Ulemek J; Foley R; Leber B; Xenocostas A; Collins TJ; Bhatia M
    J Exp Med; 2014 Sep; 211(10):1925-35. PubMed ID: 25180064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.