These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 34721823)

  • 1. Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination.
    Zhang C; Li J; Huang J; Wu S
    J Healthc Eng; 2021; 2021():3417285. PubMed ID: 34721823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of U-Net++ pulmonary nodule intelligent analysis model based on feature weighted aggregation.
    Yang D; Du J; Liu K; Sui Y; Wang J; Gai X
    Technol Health Care; 2023; 31(S1):477-486. PubMed ID: 37066943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks.
    Huang X; Sun W; Tseng TB; Li C; Qian W
    Comput Med Imaging Graph; 2019 Jun; 74():25-36. PubMed ID: 30954678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans.
    Rikhari H; Baidya Kayal E; Ganguly S; Sasi A; Sharma S; Dheeksha DS; Saini M; Rangarajan K; Bakhshi S; Kandasamy D; Mehndiratta A
    Int J Comput Assist Radiol Surg; 2024 Feb; 19(2):261-272. PubMed ID: 37594684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved faster R-CNN algorithm for assisted detection of lung nodules.
    Xu J; Ren H; Cai S; Zhang X
    Comput Biol Med; 2023 Feb; 153():106470. PubMed ID: 36587571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of lung nodules segmentation and recognition algorithm based on deep learning.
    Yu H; Li J; Zhang L; Cao Y; Yu X; Sun J
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):314. PubMed ID: 34749636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks.
    Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H
    Biomed Res Int; 2019; 2019():6051939. PubMed ID: 30719445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
    Zhang C; Sun X; Dang K; Li K; Guo XW; Chang J; Yu ZQ; Huang FY; Wu YS; Liang Z; Liu ZY; Zhang XG; Gao XL; Huang SH; Qin J; Feng WN; Zhou T; Zhang YB; Fang WJ; Zhao MF; Yang XN; Zhou Q; Wu YL; Zhong WZ
    Oncologist; 2019 Sep; 24(9):1159-1165. PubMed ID: 30996009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A deep learning-based lung nodule density classification and segmentation method and its effectiveness under different CT reconstruction algorithms].
    Meng XL; Xing ZJ; Lu S
    Zhonghua Yi Xue Za Zhi; 2021 Feb; 101(7):476-480. PubMed ID: 33631891
    [No Abstract]   [Full Text] [Related]  

  • 10. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.
    Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X
    Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation.
    Zhou C; Zhao X; Zhao L; Liu J; Chen Z; Fang S
    Comput Intell Neurosci; 2022; 2022():7326537. PubMed ID: 35996649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic pulmonary ground-glass opacity nodules detection and classification based on 3D neural network.
    Ma H; Guo H; Zhao M; Qi S; Li H; Tian Y; Li Z; Zhang G; Yao Y; Qian W
    Med Phys; 2022 Apr; 49(4):2555-2569. PubMed ID: 35092608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Chest CT Image Features in Diagnosis of Lung Cancer.
    Feng J; Jiang J
    Comput Math Methods Med; 2022; 2022():4153211. PubMed ID: 35096129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.
    Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Computed Tomography Imaging to Diagnose the Lung Nodule and Treatment Effect of Radiofrequency Ablation.
    Guo X; Li Y; Yang C; Hu Y; Zhou Y; Wang Z; Zhang L; Hu H; Wu Y
    J Healthc Eng; 2021; 2021():6556266. PubMed ID: 34721825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images.
    Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA
    Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pulmonary nodule detection method based on convolutional neural network].
    Liu Y; Hou Z; Li X; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Dec; 36(6):969-977. PubMed ID: 31875371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method.
    Jung H; Kim B; Lee I; Lee J; Kang J
    BMC Med Imaging; 2018 Dec; 18(1):48. PubMed ID: 30509191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.