BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 34721937)

  • 1. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications.
    Sarraf M; Rezvani Ghomi E; Alipour S; Ramakrishna S; Liana Sukiman N
    Biodes Manuf; 2022; 5(2):371-395. PubMed ID: 34721937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects.
    Tshephe TS; Akinwamide SO; Olevsky E; Olubambi PA
    Heliyon; 2022 Mar; 8(3):e09041. PubMed ID: 35299605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomedical Applications of Titanium Alloys: A Comprehensive Review.
    Marin E; Lanzutti A
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications.
    Trevisan F; Calignano F; Aversa A; Marchese G; Lombardi M; Biamino S; Ugues D; Manfredi D
    J Appl Biomater Funct Mater; 2018 Apr; 16(2):57-67. PubMed ID: 28967051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.
    Sidambe AT
    Materials (Basel); 2014 Dec; 7(12):8168-8188. PubMed ID: 28788296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspectives on Additive Manufacturing Enabled Beta-Titanium Alloys for Biomedical Applications.
    Sing SL
    Int J Bioprint; 2022; 8(1):478. PubMed ID: 35187280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial Ti-Mn-Cu alloys for biomedical applications.
    Alqattan M; Peters L; Alshammari Y; Yang F; Bolzoni L
    Regen Biomater; 2021 Feb; 8(1):rbaa050. PubMed ID: 33732496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry.
    Tamayo JA; Riascos M; Vargas CA; Baena LM
    Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the potential of intermetallic alloys as implantable biomaterials: A comprehensive review.
    Nasiri-Tabrizi B; Basirun WJ; Walvekar R; Yeong CH; Phang SW
    Biomater Adv; 2024 Jul; 161():213854. PubMed ID: 38703541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications.
    Kaur M; Singh K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():844-862. PubMed ID: 31147056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review.
    Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of beta-stabilizing elements of titanium alloys.
    Eisenbarth E; Velten D; Müller M; Thull R; Breme J
    Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial metals and alloys for potential biomedical implants.
    Zhang E; Zhao X; Hu J; Wang R; Fu S; Qin G
    Bioact Mater; 2021 Aug; 6(8):2569-2612. PubMed ID: 33615045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of mechanical properties, in vitro corrosion resistance and biocompatibility of Gum Metal in the context of implant applications.
    Golasiński KM; Detsch R; Szklarska M; Łosiewicz B; Zubko M; Mackiewicz S; Pieczyska EA; Boccaccini AR
    J Mech Behav Biomed Mater; 2021 Mar; 115():104289. PubMed ID: 33388535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications.
    Huang S; Sing SL; de Looze G; Wilson R; Yeong WY
    J Mech Behav Biomed Mater; 2020 Aug; 108():103775. PubMed ID: 32469713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review.
    Jang TS; Kim D; Han G; Yoon CB; Jung HD
    Biomed Eng Lett; 2020 Nov; 10(4):505-516. PubMed ID: 33194244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Processing of Titanium and Titanium Alloys through Metal Injection Molding for Biomedical Applications: 2013-2022.
    Basir A; Muhamad N; Sulong AB; Jamadon NH; Foudzi FM
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives.
    Akshaya S; Rowlo PK; Dukle A; Nathanael AJ
    Antibiotics (Basel); 2022 Nov; 11(12):. PubMed ID: 36551376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.