These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34722313)

  • 1. Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides.
    Xu F; Zhu C; Tang W; Wang Y; Zhang Y; Li J; Jiang H; Shi Z; Liu J; Jin M
    Front Oncol; 2021; 11():759007. PubMed ID: 34722313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients.
    Zhang A; Chen Z; Mei S; Ji Y; Lin Y; Shi H
    Quant Imaging Med Surg; 2024 Aug; 14(8):5831-5844. PubMed ID: 39144041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning.
    Li WB; Du ZC; Liu YJ; Gao JX; Wang JG; Dai Q; Huang WH
    Front Oncol; 2023; 13():1219838. PubMed ID: 37719009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging features of sentinel lymph node mapped by multidetector-row computed tomography lymphography in predicting axillary lymph node metastasis.
    Ou X; Zhu J; Qu Y; Wang C; Wang B; Xu X; Wang Y; Wen H; Ma A; Liu X; Zou X; Wen Z
    BMC Med Imaging; 2021 Dec; 21(1):193. PubMed ID: 34911489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammography-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer.
    Tan H; Wu Y; Bao F; Zhou J; Wan J; Tian J; Lin Y; Wang M
    Br J Radiol; 2020 Jul; 93(1111):20191019. PubMed ID: 32401540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks.
    Lee YW; Huang CS; Shih CC; Chang RF
    Comput Biol Med; 2021 Mar; 130():104206. PubMed ID: 33421823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of Simple Nomograms for Predicting Axillary Lymph Node Involvement in Early Breast Cancer.
    Zong Q; Deng J; Ge W; Chen J; Xu D
    Cancer Manag Res; 2020; 12():2025-2035. PubMed ID: 32256110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nomogram for predicting axillary lymph node pathological response in node-positive breast cancer patients after neoadjuvant chemotherapy.
    Wang W; Wang X; Liu J; Zhu Q; Wang X; Wang P
    Chin Med J (Engl); 2021 Dec; 135(3):333-340. PubMed ID: 35108228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of lymph node metastasis in pre-operation cervical cancer patients by weakly supervised deep learning from histopathological whole-slide biopsy images.
    Liu Q; Jiang N; Hao Y; Hao C; Wang W; Bian T; Wang X; Li H; Zhang Y; Kang Y; Xie F; Li Y; Jiang X; Feng Y; Mao Z; Wang Q; Gao Q; Zhang W; Cui B; Dong T
    Cancer Med; 2023 Sep; 12(17):17952-17966. PubMed ID: 37559500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer?
    Qiu X; Jiang Y; Zhao Q; Yan C; Huang M; Jiang T
    J Ultrasound Med; 2020 Oct; 39(10):1897-1905. PubMed ID: 32329142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer.
    Zheng X; Yao Z; Huang Y; Yu Y; Wang Y; Liu Y; Mao R; Li F; Xiao Y; Wang Y; Hu Y; Yu J; Zhou J
    Nat Commun; 2020 Mar; 11(1):1236. PubMed ID: 32144248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sentinel lymph node biopsy after neoadjuvant chemotherapy for breast cancer: retrospective comparative evaluation of clinically axillary lymph node positive and negative patients, including those with axillary lymph node metastases confirmed by fine needle aspiration.
    Yu Y; Cui N; Li HY; Wu YM; Xu L; Fang M; Sheng Y
    BMC Cancer; 2016 Oct; 16(1):808. PubMed ID: 27756234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an immune-related genes nomogram for the preoperative prediction of axillary lymph node metastasis in triple-negative breast cancer.
    Tan W; Xie X; Huang Z; Chen L; Tang W; Zhu R; Ye X; Zhang X; Pan L; Gao J; Tang H; Zheng W
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):288-297. PubMed ID: 31858816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning radiomics for prediction of axillary lymph node metastasis in patients with clinical stage T1-2 breast cancer.
    Wei W; Ma Q; Feng H; Wei T; Jiang F; Fan L; Zhang W; Xu J; Zhang X
    Quant Imaging Med Surg; 2023 Aug; 13(8):4995-5011. PubMed ID: 37581073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analysis of the diagnostic accuracy of ultrasound-guided fine-needle aspiration and core needle biopsy in diagnosing axillary lymph node metastasis.
    Balasubramanian I; Fleming CA; Corrigan MA; Redmond HP; Kerin MJ; Lowery AJ
    Br J Surg; 2018 Sep; 105(10):1244-1253. PubMed ID: 29972239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding contrast-enhanced ultrasound markers to conventional axillary ultrasound improves specificity for predicting axillary lymph node metastasis in patients with breast cancer.
    Du LW; Liu HL; Gong HY; Ling LJ; Wang S; Li CY; Zong M
    Br J Radiol; 2021 Feb; 94(1118):20200874. PubMed ID: 32976019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical value of tumor FDG uptake for predicting axillary lymph node metastasis in breast cancer with clinically negative axillary lymph nodes.
    Seok JW; Kim Y; An YS; Kim BS
    Ann Nucl Med; 2013 Jul; 27(6):546-53. PubMed ID: 23543486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.