These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 3472233)

  • 1. Neural networks that learn temporal sequences by selection.
    Dehaene S; Changeux JP; Nadal JP
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2727-31. PubMed ID: 3472233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity.
    Fiete IR; Senn W; Wang CZ; Hahnloser RH
    Neuron; 2010 Feb; 65(4):563-76. PubMed ID: 20188660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Selective stabilization of neuronal representations by resonance between spontaneous prerepresentations of the cerebral network and percepts evoked by interaction with the outside world].
    Heidmann A; Heidmann T; Changeux JP
    C R Acad Sci III; 1984; 299(20):839-44. PubMed ID: 6441617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances.
    Fiete IR; Fee MS; Seung HS
    J Neurophysiol; 2007 Oct; 98(4):2038-57. PubMed ID: 17652414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.
    Siri B; Berry H; Cessac B; Delord B; Quoy M
    Neural Comput; 2008 Dec; 20(12):2937-66. PubMed ID: 18624656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning a sparse code for temporal sequences using STDP and sequence compression.
    Byrnes S; Burkitt AN; Grayden DB; Meffin H
    Neural Comput; 2011 Oct; 23(10):2567-98. PubMed ID: 21732857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular, circuit, and synaptic mechanisms in song learning.
    Doupe AJ; Solis MM; Kimpo R; Boettiger CA
    Ann N Y Acad Sci; 2004 Jun; 1016():495-523. PubMed ID: 15313792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic and thalamic excitatory inputs onto songbird LMAN neurons differ in their pharmacological and temporal properties.
    Boettiger CA; Doupe AJ
    J Neurophysiol; 1998 May; 79(5):2615-28. PubMed ID: 9582233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns.
    Gerstner W; Ritz R; van Hemmen JL
    Biol Cybern; 1993; 69(5-6):503-15. PubMed ID: 7903867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An n-level field theory of biological neural networks.
    Chauvet GA
    J Math Biol; 1993; 31(8):771-95. PubMed ID: 8263424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General differential Hebbian learning: Capturing temporal relations between events in neural networks and the brain.
    Zappacosta S; Mannella F; Mirolli M; Baldassarre G
    PLoS Comput Biol; 2018 Aug; 14(8):e1006227. PubMed ID: 30153263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associative neural network model for the generation of temporal patterns. Theory and application to central pattern generators.
    Kleinfeld D; Sompolinsky H
    Biophys J; 1988 Dec; 54(6):1039-51. PubMed ID: 3233265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strongly improved stability and faster convergence of temporal sequence learning by using input correlations only.
    Porr B; Wörgötter F
    Neural Comput; 2006 Jun; 18(6):1380-412. PubMed ID: 16764508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associative recognition and storage in a model network of physiological neurons.
    Buhmann J; Schulten K
    Biol Cybern; 1986; 54(4-5):319-35. PubMed ID: 3755622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning precisely timed spikes.
    Memmesheimer RM; Rubin R; Olveczky BP; Sompolinsky H
    Neuron; 2014 May; 82(4):925-38. PubMed ID: 24768299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong.
    Fiete IR; Hahnloser RH; Fee MS; Seung HS
    J Neurophysiol; 2004 Oct; 92(4):2274-82. PubMed ID: 15071087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of noise on the function of a "physiological" neural network.
    Buhmann J; Schulten K
    Biol Cybern; 1987; 56(5-6):313-27. PubMed ID: 3620531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.