These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 3472239)
1. Evolutionary origin of cholinergic macromolecules and thyroglobulin. Mori N; Itoh N; Salvaterra PM Proc Natl Acad Sci U S A; 1987 May; 84(9):2813-7. PubMed ID: 3472239 [TBL] [Abstract][Full Text] [Related]
2. Mouse-Torpedo hybrid acetylcholine receptors: functional homology does not equal sequence homology. White MM; Mayne KM; Lester HA; Davidson N Proc Natl Acad Sci U S A; 1985 Jul; 82(14):4852-6. PubMed ID: 3860826 [TBL] [Abstract][Full Text] [Related]
3. Consensus residues at the acetylcholine binding site of cholinergic proteins. Peterson GL J Neurosci Res; 1989 Apr; 22(4):488-503. PubMed ID: 2760945 [TBL] [Abstract][Full Text] [Related]
4. Subunit structure of the acetylcholine receptor from Electrophorus electricus. Conti-Tronconi BM; Hunkapiller MW; Lindstrom JM; Raftery MA Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6489-93. PubMed ID: 6959131 [TBL] [Abstract][Full Text] [Related]
5. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit. Neumann D; Barchan D; Horowitz M; Kochva E; Fuchs S Proc Natl Acad Sci U S A; 1989 Sep; 86(18):7255-9. PubMed ID: 2780569 [TBL] [Abstract][Full Text] [Related]
6. cDNA cloning and complete sequence of porcine choline acetyltransferase: in vitro translation of the corresponding RNA yields an active protein. Berrard S; Brice A; Lottspeich F; Braun A; Barde YA; Mallet J Proc Natl Acad Sci U S A; 1987 Dec; 84(24):9280-4. PubMed ID: 3480542 [TBL] [Abstract][Full Text] [Related]
7. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Schumacher M; Camp S; Maulet Y; Newton M; MacPhee-Quigley K; Taylor SS; Friedmann T; Taylor P Nature; 1986 Jan 30-Feb 5; 319(6052):407-9. PubMed ID: 3753747 [TBL] [Abstract][Full Text] [Related]
8. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. Nguyen VT; Hall LL; Gallacher G; Ndoye A; Jolkovsky DL; Webber RJ; Buchli R; Grando SA J Dent Res; 2000 Apr; 79(4):939-49. PubMed ID: 10831096 [TBL] [Abstract][Full Text] [Related]
9. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Harel M; Sussman JL; Krejci E; Bon S; Chanal P; Massoulié J; Silman I Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10827-31. PubMed ID: 1438284 [TBL] [Abstract][Full Text] [Related]
10. Analysis of sequence and structure homologies between thyroglobulin and acetylcholinesterase: possible functional and clinical significance. Swillens S; Ludgate M; Mercken L; Dumont JE; Vassart G Biochem Biophys Res Commun; 1986 May; 137(1):142-8. PubMed ID: 3718507 [TBL] [Abstract][Full Text] [Related]
11. Molecular evolution of the binding site of the acetylcholine receptor. Fuchs S; Barchan D; Kachalsky S; Neumann D; Aladjem M; Vogel Z; Ovadia M; Kochva E Ann N Y Acad Sci; 1993 Jun; 681():126-39. PubMed ID: 8357160 [No Abstract] [Full Text] [Related]
12. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. Bossy B; Ballivet M; Spierer P EMBO J; 1988 Mar; 7(3):611-8. PubMed ID: 2840281 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Soreq H; Ben-Aziz R; Prody CA; Seidman S; Gnatt A; Neville L; Lieman-Hurwitz J; Lev-Lehman E; Ginzberg D; Lipidot-Lifson Y Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9688-92. PubMed ID: 2263619 [TBL] [Abstract][Full Text] [Related]
14. Nicotinic acetylcholine receptor contains multiple binding sites: evidence from binding of alpha-dendrotoxin. Conti-Tronconi BM; Raftery MA Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6646-50. PubMed ID: 3462717 [TBL] [Abstract][Full Text] [Related]
15. Anionic subsites of the catalytic center of acetylcholinesterase from Torpedo and from cobra venom. Kreienkamp HJ; Weise C; Raba R; Aaviksaar A; Hucho F Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6117-21. PubMed ID: 2068091 [TBL] [Abstract][Full Text] [Related]
16. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Barchan D; Kachalsky S; Neumann D; Vogel Z; Ovadia M; Kochva E; Fuchs S Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7717-21. PubMed ID: 1380164 [TBL] [Abstract][Full Text] [Related]
17. Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides. Marinou M; Tzartos SJ Biochem J; 2003 Jun; 372(Pt 2):543-54. PubMed ID: 12614199 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor. LaPolla RJ; Mayne KM; Davidson N Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7970-4. PubMed ID: 6096870 [TBL] [Abstract][Full Text] [Related]
19. Human choline acetyltransferase (CHAT): partial gene sequence and potential control regions. Toussaint JL; Geoffroy V; Schmitt M; Werner A; Garnier JM; Simoni P; Kempf J Genomics; 1992 Feb; 12(2):412-6. PubMed ID: 1339386 [TBL] [Abstract][Full Text] [Related]
20. Synthesizing enzymes for four neuroactive substances in motor neurons and neuromuscular junctions: light and electron microscopic immunocytochemistry. Chan-Palay V; Engel AG; Palay SL; Wu JY Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6717-21. PubMed ID: 6128735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]