These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34722474)

  • 1. Layer-by-Layer Fabrication of Hydrogel Microsystems for Controlled Drug Delivery From Untethered Microrobots.
    Bernasconi R; Pizzetti F; Rossetti A; Butler B; Levi M; Pané S; Rossi F; Magagnin L
    Front Bioeng Biotechnol; 2021; 9():692648. PubMed ID: 34722474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ integrated microrobots driven by artificial muscles built from biomolecular motors.
    Wang Y; Nitta T; Hiratsuka Y; Morishima K
    Sci Robot; 2022 Aug; 7(69):eaba8212. PubMed ID: 36001686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots.
    Cabanach P; Pena-Francesch A; Sheehan D; Bozuyuk U; Yasa O; Borros S; Sitti M
    Adv Mater; 2020 Oct; 32(42):e2003013. PubMed ID: 32864804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of functional microrobots.
    Li J; Pumera M
    Chem Soc Rev; 2021 Mar; 50(4):2794-2838. PubMed ID: 33470252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography.
    Wang H; Song X; Xiong J; Cheang UK
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet-Assisted Electroformation of Magnetically Guidable Water Striders for Interfacial Microfluidic Manipulation.
    Bernasconi R; Carniani D; Kim MS; Pané S; Magagnin L
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2396-2408. PubMed ID: 36512696
    [No Abstract]   [Full Text] [Related]  

  • 7. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots.
    den Hoed FM; Carlotti M; Palagi S; Raffa P; Mattoli V
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38399003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular Manipulation Using Rolling Microrobots.
    Rivas D; Mallick S; Sokolich M; Das S
    Int Conf Manip Autom Robot Small Scales; 2022 Jul; 2022():. PubMed ID: 37663239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed PNAGA thermosensitive hydrogelbased microrobots: An effective cancer therapy by temperature-triggered drug release.
    Zhou Y; Ye M; Zhao H; Wang X
    Int J Bioprint; 2023; 9(3):709. PubMed ID: 37274004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus.
    Lee H; Choi H; Lee M; Park S
    Biomed Microdevices; 2018 Nov; 20(4):103. PubMed ID: 30535774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Microrobots for DNA Vaccine Delivery.
    Chen S; Tan Z; Liao P; Li Y; Qu Y; Zhang Q; Yang M; Chan KWY; Zhang L; Man K; Chen Z; Sun D
    Adv Healthc Mater; 2023 Aug; 12(21):e2202921. PubMed ID: 37156574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable Microrobots and Their Biomedical Applications: A Review.
    Li J; Yu J
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review.
    Lao Z; Xia N; Wang S; Xu T; Wu X; Zhang L
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed microrobots from design to translation.
    Dabbagh SR; Sarabi MR; Birtek MT; Seyfi S; Sitti M; Tasoglu S
    Nat Commun; 2022 Oct; 13(1):5875. PubMed ID: 36198675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion.
    Fusco S; Huang HW; Peyer KE; Peters C; Häberli M; Ulbers A; Spyrogianni A; Pellicer E; Sort J; Pratsinis SE; Nelson BJ; Sakar MS; Pané S
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6803-11. PubMed ID: 25751020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery.
    Tran TS; Balu R; Mettu S; Roy Choudhury N; Dutta NK
    Pharmaceuticals (Basel); 2022 Oct; 15(10):. PubMed ID: 36297394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-level magnetic microrobot delivery strategy within a hierarchical vascularized organ-on-a-chip.
    Lu K; Zhou C; Li Z; Liu Y; Wang F; Xuan L; Wang X
    Lab Chip; 2024 Jan; 24(3):446-459. PubMed ID: 38095230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing Microactuators for Soft Microrobots.
    Tyagi M; Spinks GM; Jager EWH
    Soft Robot; 2021 Feb; 8(1):19-27. PubMed ID: 32326869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional 3D-Printed Pollen Grain-Inspired Hydrogel Microrobots for On-Demand Anchoring and Cargo Delivery.
    Lee YW; Kim JK; Bozuyuk U; Dogan NO; Khan MTA; Shiva A; Wild AM; Sitti M
    Adv Mater; 2023 Mar; 35(10):e2209812. PubMed ID: 36585849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy.
    Li M; Wu J; Lin D; Yang J; Jiao N; Wang Y; Liu L
    Acta Biomater; 2022 Dec; 154():443-453. PubMed ID: 36243369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.