These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34722731)

  • 1. Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction.
    Regazzoni F; Dedè L; Quarteroni A
    Vietnam J Math; 2021; 49(1):87-118. PubMed ID: 34722731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysically detailed mathematical models of multiscale cardiac active mechanics.
    Regazzoni F; Dedè L; Quarteroni A
    PLoS Comput Biol; 2020 Oct; 16(10):e1008294. PubMed ID: 33027247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle.
    Rice JJ; de Tombe PP
    Prog Biophys Mol Biol; 2004; 85(2-3):179-95. PubMed ID: 15142743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-velocity and tension transient measurements from Drosophila jump muscle reveal the necessity of both weakly-bound cross-bridges and series elasticity in models of muscle contraction.
    Jarvis KJ; Bell KM; Loya AK; Swank DM; Walcott S
    Arch Biochem Biophys; 2021 Apr; 701():108809. PubMed ID: 33610561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of muscle contraction based on the Langevin equation with actomyosin potentials.
    Tamura Y; Ito A; Saito M
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):273-283. PubMed ID: 27472485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of myosin II force generation. Insights from novel experimental techniques and approaches.
    Rassier DE; Månsson A
    Physiol Rev; 2024 Mar; ():. PubMed ID: 38451233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of muscle contraction: A historical perspective.
    Herzog W; Schappacher-Tilp G
    J Biomech; 2023 Jun; 155():111659. PubMed ID: 37290181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship.
    Chin L; Yue P; Feng JJ; Seow CY
    Biophys J; 2006 Nov; 91(10):3653-63. PubMed ID: 16935957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin Cross-Bridge Behaviour in Contracting Muscle-The T
    Knupp C; Squire JM
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31581677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multisegmental cross-bridge kinetics model of the myofibril.
    Stoecker U; Telley IA; Stüssi E; Denoth J
    J Theor Biol; 2009 Aug; 259(4):714-26. PubMed ID: 19348814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac myosin activation with 2-deoxy-ATP via increased electrostatic interactions with actin.
    Powers JD; Yuan CC; McCabe KJ; Murray JD; Childers MC; Flint GV; Moussavi-Harami F; Mohran S; Castillo R; Zuzek C; Ma W; Daggett V; McCulloch AD; Irving TC; Regnier M
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11502-11507. PubMed ID: 31110001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional stochastic model of actin-myosin binding in the sarcomere lattice.
    Mijailovich SM; Kayser-Herold O; Stojanovic B; Nedic D; Irving TC; Geeves MA
    J Gen Physiol; 2016 Dec; 148(6):459-488. PubMed ID: 27864330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A distribution-moment model of energetics in skeletal muscle.
    Ma SP; Zahalak GI
    J Biomech; 1991; 24(1):21-35. PubMed ID: 2026631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated circuit implementation of the Huxley sarcomere model.
    Hudson TA; Bragg JA; Lin DC; DeWeerth SP
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1471-9. PubMed ID: 11759928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical modeling of force generation in cardiac muscle.
    Kimmig F; Caruel M
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2567-2601. PubMed ID: 32681201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.
    Fusi L; Percario V; Brunello E; Caremani M; Bianco P; Powers JD; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2017 Feb; 595(4):1127-1142. PubMed ID: 27763660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of stochastic processes in motile crossbridge systems.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1991 Aug; 12(4):376-93. PubMed ID: 1939603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.