These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34722782)

  • 1. Isosbestic Point in Optical Mapping; Theoretical and Experimental Determination With Di-4-ANBDQPQ Transmembrane Voltage Sensitive Dye.
    Uzelac I; Crowley CJ; Fenton FH
    Comput Cardiol (2010); 2019 Sep; 46():. PubMed ID: 34722782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence emission spectral shift measurements of membrane potential in single cells.
    Kao WY; Davis CE; Kim YI; Beach JM
    Biophys J; 2001 Aug; 81(2):1163-70. PubMed ID: 11463657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium.
    Matiukas A; Mitrea BG; Qin M; Pertsov AM; Shvedko AG; Warren MD; Zaitsev AV; Wuskell JP; Wei MD; Watras J; Loew LM
    Heart Rhythm; 2007 Nov; 4(11):1441-51. PubMed ID: 17954405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spectral study of voltage sensitive dye di-4-ANEPPS].
    Xu ZH; Zhang ZX; Wang J; Zhang H; Li Z; Jin YS; Ding HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1359-62. PubMed ID: 17944414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodology for Cross-Talk Elimination in Simultaneous Voltage and Calcium Optical Mapping Measurements With Semasbestic Wavelengths.
    Uzelac I; Crowley CJ; Iravanian S; Kim TY; Cho HC; Fenton FH
    Front Physiol; 2022; 13():812968. PubMed ID: 35222080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel Acceleration on Removal of Optical Mapping Baseline Wandering.
    Uzelac I; Iravanian S; Fenton FH
    Comput Cardiol (2010); 2019 Sep; 46():. PubMed ID: 35719209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques.
    Lee P; Yan P; Ewart P; Kohl P; Loew LM; Bollensdorff C
    Pflugers Arch; 2012 Oct; 464(4):403-14. PubMed ID: 22886365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of new, long-wavelength, voltage-sensitive dyes in the heart.
    Salama G; Choi BR; Azour G; Lavasani M; Tumbev V; Salzberg BM; Patrick MJ; Ernst LA; Waggoner AS
    J Membr Biol; 2005 Nov; 208(2):125-40. PubMed ID: 16645742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous optical imaging of membrane potential and intracellular calcium.
    Fast VG
    J Electrocardiol; 2005 Oct; 38(4 Suppl):107-12. PubMed ID: 16226084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures.
    Fast VG; Ideker RE
    J Cardiovasc Electrophysiol; 2000 May; 11(5):547-56. PubMed ID: 10826934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac optical mapping under a translucent stimulation electrode.
    Liau J; Dumas J; Janks D; Roth BJ; Knisley SB
    Ann Biomed Eng; 2004 Sep; 32(9):1202-10. PubMed ID: 15493508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New near-infrared optical probes of cardiac electrical activity.
    Matiukas A; Mitrea BG; Pertsov AM; Wuskell JP; Wei MD; Watras J; Millard AC; Loew LM
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2633-43. PubMed ID: 16399869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
    Zhang H; Iijima K; Huang J; Walcott GP; Rogers JM
    Biophys J; 2016 Jul; 111(2):438-451. PubMed ID: 27463145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared voltage-sensitive dyes based on chromene donor.
    Yan P; Acker CD; Biasci V; Judge G; Monroe A; Sacconi L; Loew LM
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2305093120. PubMed ID: 37579138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action spectra of electrochromic voltage-sensitive dyes in an intact excitable tissue.
    Foley J; Muschol M
    J Biomed Opt; 2008; 13(6):064015. PubMed ID: 19123661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye.
    Beach JM; McGahren ED; Xia J; Duling BR
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2216-27. PubMed ID: 8764277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An optical mapping system based on spectral shift of voltage-sensitive dyes].
    Wang J; Zhang ZX; Xu ZH; Jin YS; Ji XL; Jin YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):617-20. PubMed ID: 18536426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle.
    Knisley SB
    Circ Res; 1995 Dec; 77(6):1229-39. PubMed ID: 7586236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.