These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34722985)

  • 1. Technical and Economic Assessment of a High-Quality Syngas Production Process Integrating Oxygen Gasification and Water Electrolysis: The Chinese Case.
    Song G; Wang L; Yao A; Cui X; Xiao J
    ACS Omega; 2021 Oct; 6(42):27851-27864. PubMed ID: 34722985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient conversion of waste-to-SNG via hybrid renewable energy systems for circular economy: Process design, energy, and environmental analysis.
    Kuo PC; Illathukandy B; Sun Z; Aziz M
    Waste Manag; 2023 Jul; 166():1-12. PubMed ID: 37137177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Co-Electrolysis and Syngas Methanation for the Direct Production of Synthetic Natural Gas from CO
    Mebrahtu C; Nohl M; Dittrich L; Foit SR; de Haart LGJB; Eichel RA; Palkovits R
    ChemSusChem; 2021 Jun; 14(11):2295-2302. PubMed ID: 33901333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and economic analysis of waste tire gasification in fluidized and fixed bed gasifiers.
    Zang G; Jia J; Shi Y; Sharma T; Ratner A
    Waste Manag; 2019 Apr; 89():201-211. PubMed ID: 31079732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study and techno-economic assessment of power-to-gas (P2G) technology based on solid oxide electrolysis (SOE).
    Martsinchyk K; Martsinchyk A; Łazor M; Shuhayeu P; Kupecki J; Niemczyk A; Błesznowski M; Milewski J
    J Environ Manage; 2024 Mar; 354():120425. PubMed ID: 38412734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.
    Marculescu C; Cenuşă V; Alexe F
    Waste Manag; 2016 Jan; 47(Pt A):133-40. PubMed ID: 26164851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSW to synthetic natural gas: System modeling and thermodynamics assessment.
    Zhu L; Zhang L; Fan J; Jiang P; Li L
    Waste Manag; 2016 Feb; 48():257-264. PubMed ID: 26525970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).
    Schildhauer TJ; Biollaz SM
    Chimia (Aarau); 2015; 69(10):603-7. PubMed ID: 26598404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.
    Agon N; Hrabovský M; Chumak O; Hlína M; Kopecký V; Masláni A; Bosmans A; Helsen L; Skoblja S; Van Oost G; Vierendeels J
    Waste Manag; 2016 Jan; 47(Pt B):246-55. PubMed ID: 26210232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gasification of algal biomass (Cladophora glomerata L.) with CO
    Ebadi AG; Hisoriev H
    Environ Technol; 2019 Feb; 40(6):749-755. PubMed ID: 29141510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the Water-Gas Shift and Carbon Capture Sections.
    Giuliano A; Freda C; Catizzone E
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32635528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal gasification of waste biomass: process design and life cycle asessment.
    Luterbacher JS; Fröling M; Vogel F; Maréchal F; Tester JW
    Environ Sci Technol; 2009 Mar; 43(5):1578-83. PubMed ID: 19350938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste-gasification efficiency of a two-stage fluidized-bed gasification system.
    Liu ZS; Lin CL; Chang TJ; Weng WC
    Waste Manag; 2016 Feb; 48():250-256. PubMed ID: 26698684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Updraft gasification of salmon processing waste.
    Rowland S; Bower CK; Patil KN; DeWitt CA
    J Food Sci; 2009 Oct; 74(8):E426-31. PubMed ID: 19799663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-steam gasification of biomass based on a multi-composition multi-step kinetic model: A clean strategy for hydrogen-enriched syngas production.
    Cao Y; Bai Y; Du J
    Sci Total Environ; 2021 Jan; 753():141690. PubMed ID: 32896730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of BioSNG from waste derived syngas: Pilot plant operation and preliminary assessment.
    Materazzi M; Taylor R; Cozens P; Manson-Whitton C
    Waste Manag; 2018 Sep; 79():752-762. PubMed ID: 30343808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction in environmental CO
    Hai T; Ali MA; Alizadeh A; Almojil SF; Almohana AI; Alali AF
    Chemosphere; 2023 Apr; 319():137847. PubMed ID: 36657576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biowaste-to-Biomethane: An LCA study on biogas and syngas roads.
    Ardolino F; Arena U
    Waste Manag; 2019 Mar; 87():441-453. PubMed ID: 31109545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification.
    Sarafraz MM; Christo FC
    Energy Convers Manag; 2020 Dec; 225():113428. PubMed ID: 32958972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prefeasibility analysis of biomass gasification and electrolysis for hydrogen production.
    Garcia-Vallejo MC; Cardona Alzate CA
    Environ Res; 2024 May; 248():118003. PubMed ID: 38163544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.