These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34723137)

  • 1. Discrete-Particle Model to Optimize Operational Conditions of Proton-Exchange Membrane Fuel-Cell Gas Channels.
    Niblett D; Holmes SM; Niasar V
    ACS Appl Energy Mater; 2021 Oct; 4(10):10514-10533. PubMed ID: 34723137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of new geometry of flow channels in proton exchange membrane fuel cell with comparing experimental and numerical methods.
    Khazaee I; Ghiabi AR; Mohammadiun H; Mohammadiun M
    Heliyon; 2024 Jun; 10(11):e32026. PubMed ID: 38961929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells.
    Li Y; Bi J; Tang M; Lu G
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Super Uniform Hydrophobic Gas Diffusion Layer for a Proton Exchange Membrane Fuel Cell.
    Xiao Y; Li X; Wang Q; Yang Y; Li B; Ming P; Zhang C; Dai H
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):38090-38099. PubMed ID: 37505078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the Design and Optimization of Trapezoidal Channels and Baffles (Number and Position) on the Net Power Density of Proton-Exchange Membrane Fuel Cells.
    Xu C; Wang H; Li Z; Cheng T
    ACS Omega; 2022 Feb; 7(5):4214-4223. PubMed ID: 35155914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy.
    Wang H; Yang G; Li S; Shen Q; Li Y; Wang R
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Compression and Porosity Gradients on Two-Phase Behavior in Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells.
    Wang H; Yang G; Shen Q; Li S; Su F; Jiang Z; Liao J; Zhang G; Sun J
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas Diffusion Layer with a Regular Hydrophilic Structure Boosts the Power Density of Proton Exchange Membrane Fuel Cells via the Construction of Water Highways.
    Zhang W; Guo F; Zhou Y; Yu S; Chen A; Jiang H; Jiang H; Li C
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17578-17584. PubMed ID: 35385640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.
    Lee PH; Han SS; Hwang SS
    Sensors (Basel); 2008 Mar; 8(3):1475-1487. PubMed ID: 27879774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipative Particle Dynamics Modeling of Polyelectrolyte Membrane-Water Interfaces.
    Sengupta S; Lyulin A
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.
    Theodorakakos A; Ous T; Gavaises M; Nouri JM; Nikolopoulos N; Yanagihara H
    J Colloid Interface Sci; 2006 Aug; 300(2):673-87. PubMed ID: 16774763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on water and oxygen transfer characteristics of HT-PEM fuel cells.
    He H; Peng H; Li G
    Heliyon; 2023 Sep; 9(9):e19832. PubMed ID: 37809893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell.
    Deng Z; Li B; Xing S; Zhao C; Wang H
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review.
    Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S
    Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells.
    Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K
    Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-Scale Modeling of Microporous Layer for Proton Exchange Membrane Fuel Cell: Effective Transport Properties.
    Zhang H; Shao X; Zhan Z; Sarker M; Sui PC; Chuang PA; Pan M
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Analysis of the Effect of Liquid Water during Switching Mode for Unitised Regenerative Proton Exchange Membrane Fuel Cell.
    Low HC; Lim BH
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy.
    Feindel KW; LaRocque LP; Starke D; Bergens SH; Wasylishen RE
    J Am Chem Soc; 2004 Sep; 126(37):11436-7. PubMed ID: 15366879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning to Reveal the Distribution and Diffusion of Water Molecules in Fuel Cell Catalyst Layers.
    Li G; Zhu Y; Guo Y; Mabuchi T; Li D; Huang S; Wang S; Sun H; Tokumasu T
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5099-5108. PubMed ID: 36652634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.