BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34723462)

  • 1. Modulation of Specialized Metabolite Production in Genetically Engineered
    Ju Z; Zhou W; Alharbi HA; Howell DC; Mahmud T
    ACS Chem Biol; 2021 Nov; 16(11):2641-2650. PubMed ID: 34723462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in
    Zhou W; Posri P; Mahmud T
    ACS Chem Biol; 2021 Feb; 16(2):270-276. PubMed ID: 33601889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin.
    Zhou Y; Murphy AC; Samborskyy M; Prediger P; Dias LC; Leadlay PF
    Chem Biol; 2015 Jun; 22(6):745-54. PubMed ID: 26091168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conglobatins B-E: cytotoxic analogues of the C
    Lacey HJ; Booth TJ; Vuong D; Rutledge PJ; Lacey E; Chooi YH; Piggott AM
    J Antibiot (Tokyo); 2020 Nov; 73(11):756-765. PubMed ID: 32555501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Studies and Revision of the NFAT-133/TM-123 Biosynthetic Pathway in
    Zhou W; Alharbi HA; Hummingbird E; Keatinge-Clay AT; Mahmud T
    ACS Chem Biol; 2022 Aug; 17(8):2039-2045. PubMed ID: 35904416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in
    Zhou W; Posri P; Abugrain ME; Weisberg AJ; Chang JH; Mahmud T
    ACS Chem Biol; 2020 Dec; 15(12):3217-3226. PubMed ID: 33284588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues.
    Ito T; Roongsawang N; Shirasaka N; Lu W; Flatt PM; Kasanah N; Miranda C; Mahmud T
    Chembiochem; 2009 Sep; 10(13):2253-65. PubMed ID: 19670201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation.
    Eida AA; Mahmud T
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4337-4345. PubMed ID: 31025074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum.
    Lu W; Alanzi AR; Abugrain ME; Ito T; Mahmud T
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10589-10601. PubMed ID: 30276712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative-Acting Thioesterase from Polyketide Biosynthesis Accepts Diverse Nucleophilic Alcohols to Yield Oxazole-Containing Esters.
    Zhang W; Yang M; Li W; Zhou L; Shen Y; Wang SP; Gao JM; Lin HW; Qi J; Zhou Y
    J Agric Food Chem; 2023 May; 71(19):7459-7467. PubMed ID: 37148255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation.
    Huang W; Ye M; Zhang LR; Wu QD; Zhang M; Xu JH; Zheng W
    Mol Cancer; 2014 Jun; 13():150. PubMed ID: 24927996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Biological Activity of NFAT-133 Congeners from
    Zhou W; Posri P; Liu XJ; Ju Z; Lan WJ; Mahmud T
    J Nat Prod; 2021 Sep; 84(9):2411-2419. PubMed ID: 34519213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeppoonic acids A - D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp.
    Lacey H; Chen R; Vuong D; Cowled MS; Lacey E; Rutledge PJ; Piggott AM
    J Antibiot (Tokyo); 2022 Feb; 75(2):108-112. PubMed ID: 34880415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed biosynthesis of 5"-fluoropactamycin in Streptomyces pactum.
    Adams ES; Rinehart KL
    J Antibiot (Tokyo); 1994 Dec; 47(12):1456-65. PubMed ID: 7844040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative characterization of the lactimidomycin and iso-migrastatin biosynthetic machineries revealing unusual features for acyltransferase-less type I polyketide synthases and providing an opportunity to engineer new analogues.
    Seo JW; Ma M; Kwong T; Ju J; Lim SK; Jiang H; Lohman JR; Yang C; Cleveland J; Zazopoulos E; Farnet CM; Shen B
    Biochemistry; 2014 Dec; 53(49):7854-65. PubMed ID: 25405956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition.
    Patel K; Piagentini M; Rascher A; Tian ZQ; Buchanan GO; Regentin R; Hu Z; Hutchinson CR; McDaniel R
    Chem Biol; 2004 Dec; 11(12):1625-33. PubMed ID: 15610846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conglobatin, a novel macrolide dilactone from Streptomyces conglobatus ATCC 31005.
    Westley JW; Liu CM; Evans RH; Blount JF
    J Antibiot (Tokyo); 1979 Sep; 32(9):874-7. PubMed ID: 511778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel aromatic polyketides from soil Streptomyces spp.: purification, characterization and bioactivity studies.
    Bundale S; Begde D; Pillai D; Gangwani K; Nashikkar N; Kadam T; Upadhyay A
    World J Microbiol Biotechnol; 2018 Apr; 34(5):67. PubMed ID: 29691661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrogating the Tailoring Steps of Pactamycin Biosynthesis and Accessing New Pactamycin Analogues.
    Abugrain ME; Lu W; Li Y; Serrill JD; Brumsted CJ; Osborn AR; Alani A; Ishmael JE; Kelly JX; Mahmud T
    Chembiochem; 2016 Sep; 17(17):1585-8. PubMed ID: 27305101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis.
    Eida AA; Abugrain ME; Brumsted CJ; Mahmud T
    Nat Chem Biol; 2019 Aug; 15(8):795-802. PubMed ID: 31308531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.