These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34723513)

  • 41. Narrowband Modulation Two-Dimensional Mass Spectrometry and Label-Free Relative Quantification of Histone Peptides.
    Halper M; Delsuc MA; Breuker K; van Agthoven MA
    Anal Chem; 2020 Oct; 92(20):13945-13952. PubMed ID: 32960586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using the entrapment sequence method as a standard to evaluate key steps of proteomics data analysis process.
    Feng XD; Li LW; Zhang JH; Zhu YP; Chang C; Shu KX; Ma J
    BMC Genomics; 2017 Mar; 18(Suppl 2):143. PubMed ID: 28361671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solution to Dark Matter Identified by Mass-Tolerant Database Search.
    Matthiesen R
    Methods Mol Biol; 2020; 2051():231-240. PubMed ID: 31552631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast Deisotoping Algorithm and Its Implementation in the MSFragger Search Engine.
    Teo GC; Polasky DA; Yu F; Nesvizhskii AI
    J Proteome Res; 2021 Jan; 20(1):498-505. PubMed ID: 33332123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics.
    Chen D; Shen X; Sun L
    Anal Chim Acta; 2018 Jul; 1012():1-9. PubMed ID: 29475469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new probabilistic database search algorithm for ETD spectra.
    Sadygov RG; Good DM; Swaney DL; Coon JJ
    J Proteome Res; 2009 Jun; 8(6):3198-205. PubMed ID: 19354237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving protein identification using complementary fragmentation techniques in fourier transform mass spectrometry.
    Nielsen ML; Savitski MM; Zubarev RA
    Mol Cell Proteomics; 2005 Jun; 4(6):835-45. PubMed ID: 15772112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Open-pFind Enhances the Identification of Missing Proteins from Human Testis Tissue.
    Sun J; Shi J; Wang Y; Wu S; Zhao L; Li Y; Wang H; Chang L; Lyu Z; Wu J; Liu F; Li W; He F; Zhang Y; Xu P
    J Proteome Res; 2019 Dec; 18(12):4189-4196. PubMed ID: 31657219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Database search strategies for proteomic data sets generated by electron capture dissociation mass spectrometry.
    Sweet SM; Jones AW; Cunningham DL; Heath JK; Creese AJ; Cooper HJ
    J Proteome Res; 2009 Dec; 8(12):5475-84. PubMed ID: 19821632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined use of peptide ion and normalized delta scores to evaluate milk authenticity by ion-trap based proteomics coupled with error tolerant searching.
    Nardiello D; Natale A; Palermo C; Quinto M; Centonze D
    Talanta; 2017 Mar; 164():684-692. PubMed ID: 28107990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
    Tu C; Sheng Q; Li J; Ma D; Shen X; Wang X; Shyr Y; Yi Z; Qu J
    J Proteome Res; 2015 Nov; 14(11):4662-73. PubMed ID: 26390080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. pFind-Alioth: A novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data.
    Chi H; He K; Yang B; Chen Z; Sun RX; Fan SB; Zhang K; Liu C; Yuan ZF; Wang QH; Liu SQ; Dong MQ; He SM
    J Proteomics; 2015 Jul; 125():89-97. PubMed ID: 25979774
    [TBL] [Abstract][Full Text] [Related]  

  • 53. reSpect: software for identification of high and low abundance ion species in chimeric tandem mass spectra.
    Shteynberg D; Mendoza L; Hoopmann MR; Sun Z; Schmidt F; Deutsch EW; Moritz RL
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1837-47. PubMed ID: 26419769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Algorithms for database-dependent search of MS/MS data.
    Matthiesen R
    Methods Mol Biol; 2013; 1007():119-38. PubMed ID: 23666724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Database Search Engines: Paradigms, Challenges and Solutions.
    Verheggen K; Martens L; Berven FS; Barsnes H; Vaudel M
    Adv Exp Med Biol; 2016; 919():147-156. PubMed ID: 27975215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A composite filter for low FDR of protein-protein interactions detected by in vivo cross-linking.
    de Jong L; Roseboom W; Kramer G
    J Proteomics; 2021 Jan; 230():103987. PubMed ID: 32949815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A face in the crowd: recognizing peptides through database search.
    Eng JK; Searle BC; Clauser KR; Tabb DL
    Mol Cell Proteomics; 2011 Nov; 10(11):R111.009522. PubMed ID: 21876205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring.
    Dworzanski JP; Snyder AP; Chen R; Zhang H; Wishart D; Li L
    Anal Chem; 2004 Apr; 76(8):2355-66. PubMed ID: 15080748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of modified peptides using localization-aware open search.
    Yu F; Teo GC; Kong AT; Haynes SE; Avtonomov DM; Geiszler DJ; Nesvizhskii AI
    Nat Commun; 2020 Aug; 11(1):4065. PubMed ID: 32792501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeted 18O-labeling for improved proteomic analysis of carbonylated peptides by mass spectrometry.
    Roe MR; McGowan TF; Thompson LV; Griffin TJ
    J Am Soc Mass Spectrom; 2010 Jul; 21(7):1190-203. PubMed ID: 20434358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.