These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34723533)

  • 1. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds.
    Gillhuber S; Franzke YJ; Weigend F
    J Phys Chem A; 2021 Nov; 125(44):9707-9723. PubMed ID: 34723533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paramagnetic NMR Shielding Tensors Based on Scalar Exact Two-Component and Spin-Orbit Perturbation Theory.
    Bruder F; Franzke YJ; Weigend F
    J Phys Chem A; 2022 Aug; 126(30):5050-5069. PubMed ID: 35857421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2017 Aug; 13(8):3731-3745. PubMed ID: 28636359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory.
    Franzke YJ; Weigend F
    J Chem Theory Comput; 2019 Feb; 15(2):1028-1043. PubMed ID: 30620588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact two-component theory becoming an efficient tool for NMR shieldings and shifts with spin-orbit coupling.
    Franzke YJ; Holzer C
    J Chem Phys; 2023 Nov; 159(18):. PubMed ID: 37937936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetically induced currents in bianthraquinodimethane-stabilized Möbius and Hückel [16]annulenes.
    Taubert S; Sundholm D; Pichierri F
    J Org Chem; 2009 Sep; 74(17):6495-502. PubMed ID: 19711991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals.
    Aquino F; Govind N; Autschbach J
    J Chem Theory Comput; 2011 Oct; 7(10):3278-92. PubMed ID: 26598162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the calculation of second-order magnetic properties using subsystem approaches in a relativistic framework.
    Olejniczak M; Bast R; Pereira Gomes AS
    Phys Chem Chem Phys; 2017 Mar; 19(12):8400-8415. PubMed ID: 28282090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.
    Soncini A
    J Chem Theory Comput; 2007 Nov; 3(6):2243-57. PubMed ID: 26636216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations.
    Holmes ST; Schurko RW
    J Chem Theory Comput; 2019 Mar; 15(3):1785-1797. PubMed ID: 30721042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear Magnetic Shielding of Monoboranes: Calculation and Assessment of
    Macháček J; Bühl M; Fanfrlík J; Hnyk D
    J Phys Chem A; 2017 Dec; 121(50):9631-9637. PubMed ID: 29164896
    [No Abstract]   [Full Text] [Related]  

  • 13. Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116.
    van Wüllen C; Langermann N
    J Chem Phys; 2007 Mar; 126(11):114106. PubMed ID: 17381195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined experimental and quantum chemistry study of selenium chemical shift tensors.
    Demko BA; Eichele K; Wasylishen RE
    J Phys Chem A; 2006 Dec; 110(50):13537-50. PubMed ID: 17165881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling.
    Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R
    J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of stereoelectronic interactions on the relativistic spin-orbit and paramagnetic components of the (13)C NMR shielding tensors of dihaloethenes.
    Viesser RV; Ducati LC; Autschbach J; Tormena CF
    Phys Chem Chem Phys; 2015 Jul; 17(29):19315-24. PubMed ID: 26138131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals.
    Autschbach J
    J Chem Phys; 2008 Apr; 128(16):164112. PubMed ID: 18447426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory.
    Autschbach J; Patchkovskii S; Pritchard B
    J Chem Theory Comput; 2011 Jul; 7(7):2175-88. PubMed ID: 26606487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2014 Jul; 141(2):024108. PubMed ID: 25028000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.