These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34723806)

  • 1. Comprehensive SNN Compression Using ADMM Optimization and Activity Regularization.
    Deng L; Wu Y; Hu Y; Liang L; Li G; Hu X; Ding Y; Li P; Xie Y
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):2791-2805. PubMed ID: 34723806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.
    Chen R; Li L
    Neural Comput; 2020 Dec; 32(12):2557-2600. PubMed ID: 32946710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks.
    Wu Y; Deng L; Li G; Zhu J; Shi L
    Front Neurosci; 2018; 12():331. PubMed ID: 29875621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training Deep Spiking Neural Networks Using Backpropagation.
    Lee JH; Delbruck T; Pfeiffer M
    Front Neurosci; 2016; 10():508. PubMed ID: 27877107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantization Framework for Fast Spiking Neural Networks.
    Li C; Ma L; Furber S
    Front Neurosci; 2022; 16():918793. PubMed ID: 35928011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Accurate and Efficient Deep Spiking Neural Networks With Double-Threshold and Augmented Schemes.
    Yu Q; Ma C; Song S; Zhang G; Dang J; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2022 Apr; 33(4):1714-1726. PubMed ID: 33471769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Soft-Pruning Method Applied During Training of Spiking Neural Networks for In-memory Computing Applications.
    Shi Y; Nguyen L; Oh S; Liu X; Kuzum D
    Front Neurosci; 2019; 13():405. PubMed ID: 31080402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
    Kugele A; Pfeil T; Pfeiffer M; Chicca E
    Front Neurosci; 2020; 14():439. PubMed ID: 32431592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks.
    Yu C; Gu Z; Li D; Wang G; Wang A; Li E
    Front Neurosci; 2022; 16():1079357. PubMed ID: 36620452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Convolutional Spiking Neural Network With Biologically Plausible Reward Propagation.
    Zhang T; Jia S; Cheng X; Xu B
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7621-7631. PubMed ID: 34125691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LIAF-Net: Leaky Integrate and Analog Fire Network for Lightweight and Efficient Spatiotemporal Information Processing.
    Wu Z; Zhang H; Lin Y; Li G; Wang M; Tang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6249-6262. PubMed ID: 33979292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators Using Time Compression Supporting Multiple Spike Codes.
    Xu C; Zhang W; Liu Y; Li P
    Front Neurosci; 2020; 14():104. PubMed ID: 32140093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.