These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34723806)

  • 21. Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain.
    Iyer LR; Chua Y; Li H
    Front Neurosci; 2021; 15():608567. PubMed ID: 33841072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rethinking Pretraining as a Bridge From ANNs to SNNs.
    Lin Y; Hu Y; Ma S; Yu D; Li G
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9054-9067. PubMed ID: 36374892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron.
    Gao H; He J; Wang H; Wang T; Zhong Z; Yu J; Wang Y; Tian M; Shi C
    Front Neurosci; 2023; 17():1141701. PubMed ID: 36968504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems.
    Guo W; Fouda ME; Yantir HE; Eltawil AM; Salama KN
    Front Neurosci; 2020; 14():598876. PubMed ID: 33281549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.
    Yu C; Du Y; Chen M; Wang A; Wang G; Li E
    Front Neurosci; 2022; 16():945037. PubMed ID: 36203801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attention Spiking Neural Networks.
    Yao M; Zhao G; Zhang H; Hu Y; Deng L; Tian Y; Xu B; Li G
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):9393-9410. PubMed ID: 37022261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Backpropagation With Sparsity Regularization for Spiking Neural Network Learning.
    Yan Y; Chu H; Jin Y; Huan Y; Zou Z; Zheng L
    Front Neurosci; 2022; 16():760298. PubMed ID: 35495028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.
    Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2017; 11():350. PubMed ID: 28701911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Spiking Neural Networks With Radix Encoding.
    Wang Z; Gu X; Goh RSM; Zhou JT; Luo T
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3689-3701. PubMed ID: 35969543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPIDE: A purely spike-based method for training feedback spiking neural networks.
    Xiao M; Meng Q; Zhang Z; Wang Y; Lin Z
    Neural Netw; 2023 Apr; 161():9-24. PubMed ID: 36736003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Adversarial Attack in Spiking Neural Networks With Spike-Compatible Gradient.
    Liang L; Hu X; Deng L; Wu Y; Li G; Ding Y; Li P; Xie Y
    IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2569-2583. PubMed ID: 34473634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks.
    Nallathambi A; Sen S; Raghunathan A; Chandrachoodan N
    Front Neurosci; 2021; 15():694402. PubMed ID: 34335168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Event-Driven Intrinsic Plasticity for Spiking Convolutional Neural Networks.
    Zhang A; Li X; Gao Y; Niu Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1986-1995. PubMed ID: 34106868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets.
    Lee J; Zhang R; Zhang W; Liu Y; Li P
    Front Neurosci; 2020; 14():143. PubMed ID: 32231513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation.
    Luo X; Qu H; Wang Y; Yi Z; Zhang J; Zhang M
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10141-10153. PubMed ID: 35436200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.