These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34723833)

  • 1. Characterization of milkweed-seed gust response.
    Galler JN; Rival DE
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34723833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of leading-edge vortices to perturbations on samara-inspired rotors: a novel solution for gust resistance.
    El Makdah AM; Sanders L; Zhang K; Rival DE
    Bioinspir Biomim; 2019 Dec; 15(1):016006. PubMed ID: 31698344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of a passive, bio-inspired flow-tracking sensor.
    Galler JN; Rival DE
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36727679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal.
    Casseau V; De Croon G; Izzo D; Pandolfi C
    PLoS One; 2015; 10(5):e0125040. PubMed ID: 25938765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of particle image velocimetry for seed release studies.
    Marchetto KM; Williams MB; Jongejans E; Auhl R; Shea K
    Ecology; 2010 Aug; 91(8):2485-92. PubMed ID: 20836470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla).
    Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L
    J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the robust autorotation of a samara-inspired rotor in gusty environments.
    El Makdah AM; Zhang K; Rival DE
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35443236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A separated vortex ring underlies the flight of the dandelion.
    Cummins C; Seale M; Macente A; Certini D; Mastropaolo E; Viola IM; Nakayama N
    Nature; 2018 Oct; 562(7727):414-418. PubMed ID: 30333579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.
    Thompson SE; Katul GG
    Glob Chang Biol; 2013 Jun; 19(6):1720-35. PubMed ID: 23505130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).
    Ben-Gida H; Kirchhefer A; Taylor ZJ; Bezner-Kerr W; Guglielmo CG; Kopp GA; Gurka R
    PLoS One; 2013; 8(11):e80086. PubMed ID: 24278243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrodynamics of eel swimming: I. Wake structure.
    Tytell ED; Lauder GV
    J Exp Biol; 2004 May; 207(Pt 11):1825-41. PubMed ID: 15107438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind gusts and plant aeroelasticity effects on the aerodynamics of pollen shedding: a hypothetical turbulence-initiated wind-pollination mechanism.
    Urzay J; Llewellyn Smith SG; Thompson E; Glover BJ
    J Theor Biol; 2009 Aug; 259(4):785-92. PubMed ID: 19445957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lift and Drag Acting on the Shell of the American Horseshoe Crab (Limulus polyphemus).
    Davis AL; Hoover AP; Miller LA
    Bull Math Biol; 2019 Oct; 81(10):3803-3822. PubMed ID: 31435839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind dispersal of battery-free wireless devices.
    Iyer V; Gaensbauer H; Daniel TL; Gollakota S
    Nature; 2022 Mar; 603(7901):427-433. PubMed ID: 35296847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.
    Kaminsky R; Morbiducci U; Rossi M; Scalise L; Verdonck P; Grigioni M
    Int J Artif Organs; 2007 Feb; 30(2):153-62. PubMed ID: 17377910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.