These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method. Cao J; You K; Jin K; Lou L; Wang Y; Chen M; Pan X; Shao J; Su Z; Wu J; Ye J Acta Ophthalmol; 2021 Feb; 99(1):e19-e27. PubMed ID: 32573116 [TBL] [Abstract][Full Text] [Related]
24. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Virgili G; Menchini F; Murro V; Peluso E; Rosa F; Casazza G Cochrane Database Syst Rev; 2011 Jul; (7):CD008081. PubMed ID: 21735421 [TBL] [Abstract][Full Text] [Related]
25. Defining Cystoid Macular Degeneration in Diabetic Macular Edema: An OCT-Based Single-center Study. Yalçın G; Özdek Ş; Baran Aksakal FN Turk J Ophthalmol; 2019 Dec; 49(6):315-322. PubMed ID: 31893586 [TBL] [Abstract][Full Text] [Related]
26. Predicting conversion to wet age-related macular degeneration using deep learning. Yim J; Chopra R; Spitz T; Winkens J; Obika A; Kelly C; Askham H; Lukic M; Huemer J; Fasler K; Moraes G; Meyer C; Wilson M; Dixon J; Hughes C; Rees G; Khaw PT; Karthikesalingam A; King D; Hassabis D; Suleyman M; Back T; Ledsam JR; Keane PA; De Fauw J Nat Med; 2020 Jun; 26(6):892-899. PubMed ID: 32424211 [TBL] [Abstract][Full Text] [Related]
27. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images. A P S; Kar S; S G; Gopi VP; Palanisamy P Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630 [TBL] [Abstract][Full Text] [Related]
28. Multimodal imaging interpreted by graders to detect re-activation of diabetic eye disease in previously treated patients: the EMERALD diagnostic accuracy study. Lois N; Cook J; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ghanchi F; Scanlon P; Sivaprasad S; Steel D; Styles C; Azuara-Blanco A; Prior L; Waugh N Health Technol Assess; 2021 May; 25(32):1-104. PubMed ID: 34060440 [TBL] [Abstract][Full Text] [Related]
29. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related]
30. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844 [TBL] [Abstract][Full Text] [Related]
31. Are we making good use of our public resources? The false-positive rate of screening by fundus photography for diabetic macular oedema. Wong RL; Tsang CW; Wong DS; McGhee S; Lam CH; Lian J; Lee JW; Lai JS; Chong V; Wong IY Hong Kong Med J; 2017 Aug; 23(4):356-64. PubMed ID: 28684650 [TBL] [Abstract][Full Text] [Related]
32. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Panozzo G; Cicinelli MV; Augustin AJ; Battaglia Parodi M; Cunha-Vaz J; Guarnaccia G; Kodjikian L; Jampol LM; Jünemann A; Lanzetta P; Löwenstein A; Midena E; Navarro R; Querques G; Ricci F; Schmidt-Erfurth U; Silva RMD; Sivaprasad S; Varano M; Virgili G; Bandello F Eur J Ophthalmol; 2020 Jan; 30(1):8-18. PubMed ID: 31718271 [TBL] [Abstract][Full Text] [Related]
34. Quantity and quality of image artifacts in optical coherence tomography angiography. Enders C; Lang GE; Dreyhaupt J; Loidl M; Lang GK; Werner JU PLoS One; 2019; 14(1):e0210505. PubMed ID: 30682050 [TBL] [Abstract][Full Text] [Related]
35. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Liu YY; Ishikawa H; Chen M; Wollstein G; Duker JS; Fujimoto JG; Schuman JS; Rehg JM Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8316-22. PubMed ID: 21911579 [TBL] [Abstract][Full Text] [Related]
36. Automatic generation of retinal optical coherence tomography images based on generative adversarial networks. Zhao M; Lu Z; Zhu S; Wang X; Feng J Med Phys; 2022 Nov; 49(11):7357-7367. PubMed ID: 36122302 [TBL] [Abstract][Full Text] [Related]
37. OPTICAL COHERENCE TOMOGRAPHY BIOMARKERS TO DISTINGUISH DIABETIC MACULAR EDEMA FROM PSEUDOPHAKIC CYSTOID MACULAR EDEMA USING MACHINE LEARNING ALGORITHMS. Hecht I; Bar A; Rokach L; Noy Achiron R; Munk MR; Huf W; Burgansky-Eliash Z; Achiron A Retina; 2019 Dec; 39(12):2283-2291. PubMed ID: 30312254 [TBL] [Abstract][Full Text] [Related]
38. Performance of Artificial Intelligence in Detecting Diabetic Macular Edema From Fundus Photography and Optical Coherence Tomography Images: A Systematic Review and Meta-analysis. Lam C; Wong YL; Tang Z; Hu X; Nguyen TX; Yang D; Zhang S; Ding J; Szeto SKH; Ran AR; Cheung CY Diabetes Care; 2024 Feb; 47(2):304-319. PubMed ID: 38241500 [TBL] [Abstract][Full Text] [Related]
39. AN UPDATED STAGING SYSTEM OF TYPE 3 NEOVASCULARIZATION USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY. Su D; Lin S; Phasukkijwatana N; Chen X; Tan A; Freund KB; Sarraf D Retina; 2016 Dec; 36 Suppl 1():S40-S49. PubMed ID: 28005662 [TBL] [Abstract][Full Text] [Related]
40. Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images. Asif S; Amjad K; Qurrat-Ul-Ain Interdiscip Sci; 2022 Dec; 14(4):906-916. PubMed ID: 35767116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]