These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34724188)
21. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. Riester O; Laufer S; Deigner HP J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530 [TBL] [Abstract][Full Text] [Related]
22. Large-Scale Cell Production Based on GMP-Grade Dissolvable Porous Microcarriers. Chen Y; Xu H; Zhang Y; Guo L; Lan M; Yang Y; Liu W; Yan X; Du Y J Vis Exp; 2023 Jul; (197):. PubMed ID: 37486127 [TBL] [Abstract][Full Text] [Related]
23. Sub-confluent culture of human mesenchymal stromal cells on biodegradable polycaprolactone microcarriers enhances bone healing of rat calvarial defect. Lam AT; Sim EJ; Shekaran A; Li J; Teo KL; Goggi JL; Reuveny S; Birch WR; Oh SK Cytotherapy; 2019 Jun; 21(6):631-642. PubMed ID: 30975604 [TBL] [Abstract][Full Text] [Related]
24. Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Chen XY; Chen JY; Tong XM; Mei JG; Chen YF; Mou XZ Biotechnol Lett; 2020 Jan; 42(1):1-10. PubMed ID: 31602549 [TBL] [Abstract][Full Text] [Related]
25. Scaling up stem cell production: harnessing the potential of microfluidic devices. Ding L; Oh S; Shrestha J; Lam A; Wang Y; Radfar P; Warkiani ME Biotechnol Adv; 2023 Dec; 69():108271. PubMed ID: 37844769 [TBL] [Abstract][Full Text] [Related]
26. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Rafiq QA; Hanga MP; Heathman TRJ; Coopman K; Nienow AW; Williams DJ; Hewitt CJ Biotechnol Bioeng; 2017 Oct; 114(10):2253-2266. PubMed ID: 28627713 [TBL] [Abstract][Full Text] [Related]
27. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Sousa MF; Silva MM; Giroux D; Hashimura Y; Wesselschmidt R; Lee B; Roldão A; Carrondo MJ; Alves PM; Serra M Biotechnol Prog; 2015; 31(6):1600-12. PubMed ID: 26289142 [TBL] [Abstract][Full Text] [Related]
28. A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Frauenschuh S; Reichmann E; Ibold Y; Goetz PM; Sittinger M; Ringe J Biotechnol Prog; 2007; 23(1):187-93. PubMed ID: 17269687 [TBL] [Abstract][Full Text] [Related]
29. Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System. Cartaxo AL; Fernandes-Platzgummer A; Rodrigues CAV; Melo AM; Tecklenburg K; Margreiter E; Day RM; da Silva CL; Cabral JMS Tissue Eng Part C Methods; 2023 Dec; 29(12):583-595. PubMed ID: 37842845 [TBL] [Abstract][Full Text] [Related]
31. Microfluidic Generation of Porous Microcarriers for Three-Dimensional Cell Culture. Wang J; Cheng Y; Yu Y; Fu F; Chen Z; Zhao Y; Gu Z ACS Appl Mater Interfaces; 2015 Dec; 7(49):27035-9. PubMed ID: 26634625 [TBL] [Abstract][Full Text] [Related]
32. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs. Zhang Y; Na T; Zhang K; Yang Y; Xu H; Wei L; Xu L; Yan X; Liu W; Liu G; Wang B; Meng S; Du Y J Tissue Eng Regen Med; 2022 Oct; 16(10):934-944. PubMed ID: 35929499 [TBL] [Abstract][Full Text] [Related]
33. Chondrogenic differentiation of human adipose‑derived stem cells using microcarrier and bioreactor combination technique. Kang H; Lu S; Peng J; Yang Q; Liu S; Zhang L; Huang J; Sui X; Zhao B; Wang A; Xu W; Guo Q; Song Q Mol Med Rep; 2015 Feb; 11(2):1195-9. PubMed ID: 25355169 [TBL] [Abstract][Full Text] [Related]
34. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor. Abeille F; Mittler F; Obeid P; Huet M; Kermarrec F; Dolega ME; Navarro F; Pouteau P; Icard B; Gidrol X; Agache V; Picollet-D'hahan N Lab Chip; 2014 Sep; 14(18):3510-8. PubMed ID: 25012393 [TBL] [Abstract][Full Text] [Related]
35. Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat. Norris SCP; Kawecki NS; Davis AR; Chen KK; Rowat AC Biomaterials; 2022 Aug; 287():121669. PubMed ID: 35853359 [TBL] [Abstract][Full Text] [Related]
36. Three-dimensional-printing for microfluidics or the other way around? Zhang Y Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534 [TBL] [Abstract][Full Text] [Related]
37. A scalable system for generation of mesenchymal stem cells derived from induced pluripotent cells employing bioreactors and degradable microcarriers. Rogers RE; Haskell A; White BP; Dalal S; Lopez M; Tahan D; Pan S; Kaur G; Kim H; Barreda H; Woodard SL; Benavides OR; Dai J; Zhao Q; Maitland KC; Han A; Nikolov ZL; Liu F; Lee RH; Gregory CA; Kaunas R Stem Cells Transl Med; 2021 Dec; 10(12):1650-1665. PubMed ID: 34505405 [TBL] [Abstract][Full Text] [Related]
38. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension. Fan Y; Hsiung M; Cheng C; Tzanakakis ES Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972 [TBL] [Abstract][Full Text] [Related]
39. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Sart S; Agathos SN; Li Y; Ma T Biotechnol J; 2016 Jan; 11(1):43-57. PubMed ID: 26696441 [TBL] [Abstract][Full Text] [Related]
40. Design and development of a new ambr250® bioreactor vessel for improved cell and gene therapy applications. Rotondi M; Grace N; Betts J; Bargh N; Costariol E; Zoro B; Hewitt CJ; Nienow AW; Rafiq QA Biotechnol Lett; 2021 May; 43(5):1103-1116. PubMed ID: 33528693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]