These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 34724274)
21. The Warburg effect: a score for many instruments in the concert of cancer and cancer niche cells. Jaworska M; Szczudło J; Pietrzyk A; Shah J; Trojan SE; Ostrowska B; Kocemba-Pilarczyk KA Pharmacol Rep; 2023 Aug; 75(4):876-890. PubMed ID: 37332080 [TBL] [Abstract][Full Text] [Related]
22. Metabolic phenotype of bladder cancer. Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021 [TBL] [Abstract][Full Text] [Related]
23. Natural products and derivatives in renal, urothelial and testicular cancers: Targeting signaling pathways and therapeutic potential. Li D; Wang J; Tuo Z; Yoo KH; Yu Q; Miyamoto A; Zhang C; Ye X; Wei W; Wu R; Feng D Phytomedicine; 2024 May; 127():155503. PubMed ID: 38490077 [TBL] [Abstract][Full Text] [Related]
24. Inhibitory Potential of Dietary Nutraceuticals on Cellular PI3K/Akt Signaling: Implications in Cancer Prevention and Therapy. Narayanankutty A Curr Top Med Chem; 2021; 21(20):1816-1831. PubMed ID: 34279200 [TBL] [Abstract][Full Text] [Related]
25. Targeting lactate metabolism and immune interaction in breast tumor via protease-triggered delivery. Zhao P; Wang S; Jiang J; Gao Y; Wang Y; Zhao Y; Zhang J; Zhang M; Huang Y J Control Release; 2023 Jun; 358():706-717. PubMed ID: 37207796 [TBL] [Abstract][Full Text] [Related]
26. The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Reuss AM; Groos D; Buchfelder M; Savaskan N Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073734 [TBL] [Abstract][Full Text] [Related]
27. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Sun Q; Chen X; Ma J; Peng H; Wang F; Zha X; Wang Y; Jing Y; Yang H; Chen R; Chang L; Zhang Y; Goto J; Onda H; Chen T; Wang MR; Lu Y; You H; Kwiatkowski D; Zhang H Proc Natl Acad Sci U S A; 2011 Mar; 108(10):4129-34. PubMed ID: 21325052 [TBL] [Abstract][Full Text] [Related]
28. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. Salminen A; Kauppinen A; Kaarniranta K J Mol Med (Berl); 2019 Aug; 97(8):1049-1064. PubMed ID: 31129755 [TBL] [Abstract][Full Text] [Related]
29. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Dias AS; Helguero L; Almeida CR; Duarte IF Molecules; 2021 Jun; 26(12):. PubMed ID: 34201298 [TBL] [Abstract][Full Text] [Related]
30. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy. Cui Y; Li C; Sang F; Cao W; Qin Z; Zhang P Front Pharmacol; 2022; 13():1035882. PubMed ID: 36339566 [TBL] [Abstract][Full Text] [Related]
31. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Martinez-Outschoorn U; Sotgia F; Lisanti MP Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293 [TBL] [Abstract][Full Text] [Related]
32. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Hayes C; Donohoe CL; Davern M; Donlon NE Cancer Lett; 2021 Mar; 500():75-86. PubMed ID: 33347908 [TBL] [Abstract][Full Text] [Related]
33. Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway. Wei J; Wu J; Xu W; Nie H; Zhou R; Wang R; Liu Y; Tang G; Wu J Cell Death Dis; 2018 May; 9(6):599. PubMed ID: 29789538 [TBL] [Abstract][Full Text] [Related]
34. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Sun Q; Wu J; Zhu G; Li T; Zhu X; Ni B; Xu B; Ma X; Li J Front Endocrinol (Lausanne); 2022; 13():1089918. PubMed ID: 36778600 [TBL] [Abstract][Full Text] [Related]
35. Physciosporin suppresses mitochondrial respiration, aerobic glycolysis, and tumorigenesis in breast cancer. Taş İ; Varlı M; Son Y; Han J; Kwak D; Yang Y; Zhou R; Gamage CDB; Pulat S; Park SY; Yu YH; Moon KS; Lee KH; Ha HH; Hur JS; Kim H Phytomedicine; 2021 Oct; 91():153674. PubMed ID: 34333327 [TBL] [Abstract][Full Text] [Related]
36. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells. Zeng L; Zhou HY; Tang NN; Zhang WF; He GJ; Hao B; Feng YD; Zhu H World J Gastroenterol; 2016 May; 22(20):4868-80. PubMed ID: 27239113 [TBL] [Abstract][Full Text] [Related]
37. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. Vaz CV; Marques R; Alves MG; Oliveira PF; Cavaco JE; Maia CJ; Socorro S J Cancer Res Clin Oncol; 2016 Jan; 142(1):5-16. PubMed ID: 26048031 [TBL] [Abstract][Full Text] [Related]
38. [Recombinant methioninase regulates PI3K/Akt/Glut-1 pathway and inhibits aerobic glycolysis to promote apoptosis of gastric cancer cells]. Zhou L; Li S; Liu L; Zhou Q; Yuan Y; Xin L Nan Fang Yi Ke Da Xue Xue Bao; 2020 Jan; 40(1):27-33. PubMed ID: 32376548 [TBL] [Abstract][Full Text] [Related]
39. Metabolome Analysis Reveals Excessive Glycolysis via PI3K/AKT/mTOR and RAS/MAPK Signaling in Methotrexate-Resistant Primary CNS Lymphoma-Derived Cells. Takashima Y; Hayano A; Yamanaka R Clin Cancer Res; 2020 Jun; 26(11):2754-2766. PubMed ID: 32108030 [TBL] [Abstract][Full Text] [Related]
40. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Sevastre AS; Manea EV; Popescu OS; Tache DE; Danoiu S; Sfredel V; Tataranu LG; Dricu A Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077338 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]