These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3472482)
21. Oxidative phosphorylation system during steady-state hypoxia in the dog brain. Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431 [TBL] [Abstract][Full Text] [Related]
22. Magnetic resonance spectroscopy of normal and diseased muscles. Chance B; Younkin DP; Kelley R; Bank WJ; Berkowitz HD; Argov Z; Donlon E; Boden B; McCully K; Buist NM Am J Med Genet; 1986 Dec; 25(4):659-79. PubMed ID: 2947466 [TBL] [Abstract][Full Text] [Related]
23. Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5'-nucleotidase. Bak MI; Ingwall JS J Clin Invest; 1994 Jan; 93(1):40-9. PubMed ID: 8282812 [TBL] [Abstract][Full Text] [Related]
24. Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue. Chance B; Bank W Biochim Biophys Acta; 1995 May; 1271(1):7-14. PubMed ID: 7599229 [TBL] [Abstract][Full Text] [Related]
25. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thompson CH; Davies RJ; Kemp GJ; Taylor DJ; Radda GK; Rajagopalan B Thorax; 1993 May; 48(5):486-90. PubMed ID: 8322233 [TBL] [Abstract][Full Text] [Related]
26. 31P-NMR studies of cerebral metabolic changes during graded hypoxia in newborn lambs. Younkin DP; Wagerle LC; Chance B; Maria J; Delivoria-Papadopoulos M J Appl Physiol (1985); 1987 Apr; 62(4):1569-74. PubMed ID: 3597226 [TBL] [Abstract][Full Text] [Related]
27. Microvascular tissue oxygenation and oxidative metabolism changes in the pedicled latissimus dorsi muscle during graded hypoxia: correlation between near infrared and 31P nuclear magnetic resonance spectroscopy. Troitzsch D; Moosdorf R; Vogt S J Surg Res; 2012 Jul; 176(1):337-42. PubMed ID: 21705019 [TBL] [Abstract][Full Text] [Related]
28. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. Allen DG; Morris PG; Orchard CH; Pirolo JS J Physiol; 1985 Apr; 361():185-204. PubMed ID: 3989725 [TBL] [Abstract][Full Text] [Related]
29. Age dependence of steady state mitochondrial oxidative metabolism in the in vivo hypoxic dog brain. Nioka S; Smith DS; Mayevsky A; Dobson GP; Veech RL; Subramanian H; Chance B Neurol Res; 1991 Mar; 13(1):25-32. PubMed ID: 1675443 [TBL] [Abstract][Full Text] [Related]
30. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats. Andrews BT; Weinstein PR; Keniry M; Pereira B Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405 [TBL] [Abstract][Full Text] [Related]
31. ³¹P-magnetization transfer magnetic resonance spectroscopy measurements of in vivo metabolism. Befroy DE; Rothman DL; Petersen KF; Shulman GI Diabetes; 2012 Nov; 61(11):2669-78. PubMed ID: 23093656 [TBL] [Abstract][Full Text] [Related]
32. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS. Weiss K; Bottomley PA; Weiss RG NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379 [TBL] [Abstract][Full Text] [Related]
33. Value of dynamic ³¹P magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes. Wu FY; Tu HJ; Qin B; Chen T; Xu HF; Qi J; Wang DH Chin Med J (Engl); 2012 Jan; 125(2):281-6. PubMed ID: 22340560 [TBL] [Abstract][Full Text] [Related]
34. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. Dawson MJ; Gadian DG; Wilkie DR J Physiol; 1980 Feb; 299():465-84. PubMed ID: 6966688 [TBL] [Abstract][Full Text] [Related]
35. AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study. Doliba NM; Babsky AM; Doliba NM; Wehrli SL; Osbakken MD Cell Biochem Funct; 2015 Mar; 33(2):67-72. PubMed ID: 25663655 [TBL] [Abstract][Full Text] [Related]
36. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. McMahon S; Jenkins D Sports Med; 2002; 32(12):761-84. PubMed ID: 12238940 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of the metabolism of high energy phosphates in patients with Chagas' disease. Leme AM; Salemi VM; Parga JR; Ianni BM; Mady C; Weiss RG; Kalil-Filho R Arq Bras Cardiol; 2010 Aug; 95(2):264-70. PubMed ID: 20676586 [TBL] [Abstract][Full Text] [Related]
38. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Arnold DL; Taylor DJ; Radda GK Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759 [TBL] [Abstract][Full Text] [Related]
39. Improvement of muscular oxidative capacity by training is associated with slight acidosis and ATP depletion in exercising muscles. Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E Muscle Nerve; 1996 Mar; 19(3):355-61. PubMed ID: 8606701 [TBL] [Abstract][Full Text] [Related]
40. [Diabetic foot syndrome: importance of calf muscles MR spectroscopy in the assessment of limb ischemia and effect of revascularization]. Němcová A; Dubský M; Jirkovská A; Šedivý P; Drobný M; Hájek M; Dezortová M; Bém R; Fejfarová V; Pyšná A Vnitr Lek; 2017; 63(4):236-241. PubMed ID: 28520446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]