These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 34725311)

  • 1. EEG-based brain-computer interfaces exploiting steady-state somatosensory-evoked potentials: a literature review.
    Petit J; Rouillard J; Cabestaing F
    J Neural Eng; 2021 Nov; 18(5):. PubMed ID: 34725311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Transient Target Stimuli in a Steady-State Somatosensory Evoked Potential-Based Brain-Computer Interface Setup.
    Pokorny C; Breitwieser C; Müller-Putz GR
    Front Neurosci; 2016; 10():152. PubMed ID: 27092051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control.
    Smith DJ; Varghese LA; Stepp CE; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-stimulus phase coherence in steady-state somatosensory evoked potentials and its application in improving the performance of single-channel MI-BCI.
    Tao X; Yi W; Wang K; He F; Qi H
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34077914
    [No Abstract]   [Full Text] [Related]  

  • 5. Common spatial patterns for steady-state somatosensory evoked potentials.
    Nam Y; Cichocki A; Choi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2255-8. PubMed ID: 24110173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvements in Classification of Left and Right Foot Motor Intention Using Modulated Steady-State Somatosensory Evoked Potential Induced by Electrical Stimulation and Motor Imagery.
    Bian Y; Zhao L; Li J; Guo T; Fu X; Qi H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():150-159. PubMed ID: 36318565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs.
    Breitwieser C; Pokorny C; Müller-Putz GR
    J Neural Eng; 2016 Dec; 13(6):066015. PubMed ID: 27788124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-State Somatosensory Evoked Potential for Brain-Computer Interface-Present and Future.
    Ahn S; Kim K; Jun SC
    Front Hum Neurosci; 2015; 9():716. PubMed ID: 26834611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials.
    Kim KT; Suk HI; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):654-665. PubMed ID: 27514060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-signature brain-computer interface: use of transient and steady-state responses.
    Severens M; Farquhar J; Duysens J; Desain P
    J Neural Eng; 2013 Apr; 10(2):026005. PubMed ID: 23370146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces?
    Müller-Putz GR; Scherer R; Neuper C; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):30-7. PubMed ID: 16562629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering.
    Mobaien A; Boostani R; Sanei S
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295418
    [No Abstract]   [Full Text] [Related]  

  • 16. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 17. High-Frequency Vibrating Stimuli Using the Low-Cost Coin-Type Motors for SSSEP-Based BCI.
    Kim KT; Choi J; Jeong JH; Kim H; Lee SJ
    Biomed Res Int; 2022; 2022():4100381. PubMed ID: 36060141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel reflection: Knowledge-driven data augmentation for EEG-based brain-computer interfaces.
    Wang Z; Li S; Luo J; Liu J; Wu D
    Neural Netw; 2024 Aug; 176():106351. PubMed ID: 38713969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel electrotactile brain-computer interface with somatosensory event-related potential based control.
    Savić AM; Novičić M; Ðorđević O; Konstantinović L; Miler-Jerković V
    Front Hum Neurosci; 2023; 17():1096814. PubMed ID: 37033908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test-retest reliability of concurrently recorded steady-state and somatosensory evoked potentials in somatosensory sustained spatial attention.
    Pang CY; Mueller MM
    Biol Psychol; 2014 Jul; 100():86-96. PubMed ID: 24911551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.