BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34725509)

  • 1. Structure-based investigation of fluorogenic Pepper aptamer.
    Huang K; Chen X; Li C; Song Q; Li H; Zhu L; Yang Y; Ren A
    Nat Chem Biol; 2021 Dec; 17(12):1289-1295. PubMed ID: 34725509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif.
    Shelke SA; Shao Y; Laski A; Koirala D; Weissman BP; Fuller JR; Tan X; Constantin TP; Waggoner AS; Bruchez MP; Armitage BA; Piccirilli JA
    Nat Commun; 2018 Oct; 9(1):4542. PubMed ID: 30382099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis for Fluorescence Activation by Pepper RNA.
    Rees HC; Gogacz W; Li NS; Koirala D; Piccirilli JA
    ACS Chem Biol; 2022 Jul; 17(7):1866-1875. PubMed ID: 35759696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer.
    Filonov GS; Song W; Jaffrey SR
    Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine.
    Mieczkowski M; Steinmetzger C; Bessi I; Lenz AK; Schmiedel A; Holzapfel M; Lambert C; Pena V; Höbartner C
    Nat Commun; 2021 Jun; 12(1):3549. PubMed ID: 34112799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer.
    Steinmetzger C; Bessi I; Lenz AK; Höbartner C
    Nucleic Acids Res; 2019 Dec; 47(22):11538-11550. PubMed ID: 31740962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable RNA detection with a fluorescent RNA aptamer using optimized three-way junction formation.
    Furuhata Y; Kobayashi M; Maruyama R; Sato Y; Makino K; Michiue T; Yui H; Nishizawa S; Yoshimoto K
    RNA; 2019 May; 25(5):590-599. PubMed ID: 30745364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding between G Quadruplexes at the Homodimer Interface of the Corn RNA Aptamer Strongly Activates Thioflavin T Fluorescence.
    Sjekloća L; Ferré-D'Amaré AR
    Cell Chem Biol; 2019 Aug; 26(8):1159-1168.e4. PubMed ID: 31178406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The emerging structural complexity of G-quadruplex RNAs.
    Banco MT; Ferré-D'Amaré AR
    RNA; 2021 Apr; 27(4):390-402. PubMed ID: 33483368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Guided Engineering of the Homodimeric Mango-IV Fluorescence Turn-on Aptamer Yields an RNA FRET Pair.
    Trachman RJ; Cojocaru R; Wu D; Piszczek G; Ryckelynck M; Unrau PJ; Ferré-D'Amaré AR
    Structure; 2020 Jul; 28(7):776-785.e3. PubMed ID: 32386573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore.
    Huang H; Suslov NB; Li NS; Shelke SA; Evans ME; Koldobskaya Y; Rice PA; Piccirilli JA
    Nat Chem Biol; 2014 Aug; 10(8):686-91. PubMed ID: 24952597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein.
    Warner KD; Chen MC; Song W; Strack RL; Thorn A; Jaffrey SR; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2014 Aug; 21(8):658-63. PubMed ID: 25026079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Principles of Fluorescent RNA Aptamers.
    Trachman RJ; Truong L; Ferré-D'Amaré AR
    Trends Pharmacol Sci; 2017 Oct; 38(10):928-939. PubMed ID: 28728963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific Binding of a d-RNA G-Quadruplex Structure with an l-RNA Aptamer.
    Chan CY; Kwok CK
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5293-5297. PubMed ID: 31975549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer.
    Li X; Wu J; Jaffrey SR
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24153-24161. PubMed ID: 34490956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold.
    Truong L; Kooshapur H; Dey SK; Li X; Tjandra N; Jaffrey SR; Ferré-D'Amaré AR
    Nat Chem Biol; 2022 Feb; 18(2):191-198. PubMed ID: 34937911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers.
    Trachman RJ; Ferré-D'Amaré AR
    Q Rev Biophys; 2019 Aug; 52():e8. PubMed ID: 31423956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Color-Shifting Near-Infrared Fluorescent Aptamer-Fluorophore Module for Live-Cell RNA Imaging.
    Zhang J; Wang L; Jäschke A; Sunbul M
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21441-21448. PubMed ID: 34309994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer.
    Trachman RJ; Autour A; Jeng SCY; Abdolahzadeh A; Andreoni A; Cojocaru R; Garipov R; Dolgosheina EV; Knutson JR; Ryckelynck M; Unrau PJ; Ferré-D'Amaré AR
    Nat Chem Biol; 2019 May; 15(5):472-479. PubMed ID: 30992561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing G-tetrad scaffolds within G-quadruplex forming aptamers for fluorescence detection strategies.
    Sproviero M; Manderville RA
    Chem Commun (Camb); 2014 Mar; 50(23):3097-9. PubMed ID: 24513595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.