These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 34725772)
21. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063 [TBL] [Abstract][Full Text] [Related]
22. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related]
23. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
24. Applicability of a pathological complete response magnetic resonance-based radiomics model for locally advanced rectal cancer in intercontinental cohort. Boldrini L; Lenkowicz J; Orlandini LC; Yin G; Cusumano D; Chiloiro G; Dinapoli N; Peng Q; Casà C; Gambacorta MA; Valentini V; Lang J Radiat Oncol; 2022 Apr; 17(1):78. PubMed ID: 35428267 [TBL] [Abstract][Full Text] [Related]
25. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
26. Diagnostic accuracy of MRI in assessing tumor regression and identifying complete response in patients with locally advanced rectal cancer after neoadjuvant treatment. Aker M; Boone D; Chandramohan A; Sizer B; Motson R; Arulampalam T Abdom Radiol (NY); 2018 Dec; 43(12):3213-3219. PubMed ID: 29767284 [TBL] [Abstract][Full Text] [Related]
27. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192 [TBL] [Abstract][Full Text] [Related]
28. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510 [TBL] [Abstract][Full Text] [Related]
29. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226 [TBL] [Abstract][Full Text] [Related]
30. Quantitative analysis of diffusion weighted imaging to predict pathological good response to neoadjuvant chemoradiation for locally advanced rectal cancer. Tang Z; Zhang XY; Liu Z; Li XT; Shi YJ; Wang S; Fang M; Shen C; Dong E; Sun YS; Tian J Radiother Oncol; 2019 Mar; 132():100-108. PubMed ID: 30825957 [TBL] [Abstract][Full Text] [Related]
31. Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A multicentre study. Liu X; Zhang D; Liu Z; Li Z; Xie P; Sun K; Wei W; Dai W; Tang Z; Ding Y; Cai G; Tong T; Meng X; Tian J EBioMedicine; 2021 Jul; 69():103442. PubMed ID: 34157487 [TBL] [Abstract][Full Text] [Related]
32. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. Wang J; Chen J; Zhou R; Gao Y; Li J BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946 [TBL] [Abstract][Full Text] [Related]
33. Role of MRI‑based radiomics in locally advanced rectal cancer (Review). Zhang S; Yu M; Chen D; Li P; Tang B; Li J Oncol Rep; 2022 Feb; 47(2):. PubMed ID: 34935061 [TBL] [Abstract][Full Text] [Related]
34. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
35. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer. Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710 [TBL] [Abstract][Full Text] [Related]
36. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Shahzadi I; Zwanenburg A; Lattermann A; Linge A; Baldus C; Peeken JC; Combs SE; Diefenhardt M; Rödel C; Kirste S; Grosu AL; Baumann M; Krause M; Troost EGC; Löck S Sci Rep; 2022 Jun; 12(1):10192. PubMed ID: 35715462 [TBL] [Abstract][Full Text] [Related]
37. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer. Jiang H; Guo W; Yu Z; Lin X; Zhang M; Jiang H; Zhang H; Sun Z; Li J; Yu Y; Zhao S; Hu H Acad Radiol; 2023 Sep; 30 Suppl 1():S185-S198. PubMed ID: 37394412 [TBL] [Abstract][Full Text] [Related]
38. Radiomics-enhanced early regression index for predicting treatment response in rectal cancer: a multi-institutional 0.35 T MRI-guided radiotherapy study. Boldrini L; Chiloiro G; Cusumano D; Yadav P; Yu G; Romano A; Piras A; Votta C; Placidi L; Broggi S; Catucci F; Lenkowicz J; Indovina L; Bassetti MF; Yang Y; Fiorino C; Valentini V; Gambacorta MA Radiol Med; 2024 Apr; 129(4):615-622. PubMed ID: 38512616 [TBL] [Abstract][Full Text] [Related]
39. Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Tang B; Lenkowicz J; Peng Q; Boldrini L; Hou Q; Dinapoli N; Valentini V; Diao P; Yin G; Orlandini LC BMC Med Imaging; 2022 Mar; 22(1):44. PubMed ID: 35287607 [TBL] [Abstract][Full Text] [Related]
40. MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer. Park H; Kim KA; Jung JH; Rhie J; Choi SY Eur Radiol; 2020 Aug; 30(8):4201-4211. PubMed ID: 32270317 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]