BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34725898)

  • 1. Nepetin Acts as a Multi-Targeting Inhibitor of Protein Tyrosine Phosphatases Relevant to Insulin Resistance.
    Yoon SY; Ahn D; Kim JK; Seo SO; Chung SJ
    Chem Biodivers; 2022 Jan; 19(1):e202100600. PubMed ID: 34725898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl Syringate Stimulates Glucose Uptake by Inhibiting Protein Tyrosine Phosphatases Relevant to Insulin Resistance.
    Ahn D; Kwon J; Song S; Lee J; Yoon S; Chung SJ
    Life (Basel); 2023 Jun; 13(6):. PubMed ID: 37374154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance.
    Yoon SY; Yu JS; Hwang JY; So HM; Seo SO; Kim JK; Jang TS; Chung SJ; Kim KH
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance.
    Yoon SY; Kang HJ; Ahn D; Hwang JY; Kwon SJ; Chung SJ
    Bioorg Chem; 2019 Sep; 90():103087. PubMed ID: 31284101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma.
    Karaca Atabay E; Mecca C; Wang Q; Ambrogio C; Mota I; Prokoph N; Mura G; Martinengo C; Patrucco E; Leonardi G; Hossa J; Pich A; Mologni L; Gambacorti-Passerini C; Brugières L; Geoerger B; Turner SD; Voena C; Cheong TC; Chiarle R
    Blood; 2022 Feb; 139(5):717-731. PubMed ID: 34657149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor.
    Le HTT; Cho YC; Cho S
    BMB Rep; 2017 Jun; 50(6):329-334. PubMed ID: 28228214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives.
    Li Y; Lu L; Zhu M; Wang Q; Yuan C; Xing S; Fu X; Mei Y
    Biometals; 2011 Dec; 24(6):993-1004. PubMed ID: 21618062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting protein tyrosine phosphatases for anticancer drug discovery.
    Scott LM; Lawrence HR; Sebti SM; Lawrence NJ; Wu J
    Curr Pharm Des; 2010 Jun; 16(16):1843-62. PubMed ID: 20337577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terminalin from African Mango (
    Yoon SY; Kim J; Lee BS; Baek SC; Chung SJ; Kim KH
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation.
    González-Fernández L; Ortega-Ferrusola C; Macias-Garcia B; Salido GM; Peña FJ; Tapia JA
    Biol Reprod; 2009 Jun; 80(6):1239-52. PubMed ID: 19211810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research progress of several protein tyrosine phosphatases in diabetes].
    Chen M; Sun JP; Liu J; Yu X
    Sheng Li Xue Bao; 2010 Apr; 62(2):179-89. PubMed ID: 20401454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice.
    Loh K; Merry TL; Galic S; Wu BJ; Watt MJ; Zhang S; Zhang ZY; Neel BG; Tiganis T
    Diabetologia; 2012 Feb; 55(2):468-78. PubMed ID: 22124607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dinuclear copper complexes of organic claw: potent inhibition of protein tyrosine phosphatases.
    Ma L; Lu L; Zhu M; Wang Q; Gao F; Yuan C; Wu Y; Xing S; Fu X; Mei Y; Gao X
    J Inorg Biochem; 2011 Sep; 105(9):1138-47. PubMed ID: 21708098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach.
    Rao GS; Ramachandran MV; Bajaj JS
    J Biomol Struct Dyn; 2006 Feb; 23(4):377-84. PubMed ID: 16363874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biological evaluation of 2,4,6-trihydroxychalcone derivatives as novel protein tyrosine phosphatase 1B inhibitors.
    Sun LP; Gao LX; Ma WP; Nan FJ; Li J; Piao HR
    Chem Biol Drug Des; 2012 Oct; 80(4):584-90. PubMed ID: 22805439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ginkgolic acid as a dual-targeting inhibitor for protein tyrosine phosphatases relevant to insulin resistance.
    Yoon SY; Lee JH; Kwon SJ; Kang HJ; Chung SJ
    Bioorg Chem; 2018 Dec; 81():264-269. PubMed ID: 30153591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of FGFR3 by PTPN1 and PTPN2.
    St-Germain JR; Taylor P; Zhang W; Li Z; Ketela T; Moffat J; Neel BG; Trudel S; Moran MF
    Proteomics; 2015 Jan; 15(2-3):419-33. PubMed ID: 25311528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases.
    Hsu MF; Meng TC
    J Biol Chem; 2010 Mar; 285(11):7919-28. PubMed ID: 20064934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and structure-activity optimization of azepane-containing derivatives as PTPN2/PTPN1 inhibitors.
    Zheng J; Zhang Z; Ding X; Sun D; Min L; Wang F; Shi S; Cai X; Zhang M; Aliper A; Ren F; Ding X; Zhavoronkov A
    Eur J Med Chem; 2024 Apr; 270():116390. PubMed ID: 38604096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells.
    Stanley WJ; Trivedi PM; Sutherland AP; Thomas HE; Gurzov EN
    J Mol Endocrinol; 2017 Nov; 59(4):325-337. PubMed ID: 28827413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.