These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34725925)

  • 1. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications.
    Wang Y; Chen X; Xiu H; Zhuang H; Li J; Zhou Y; Liu D; Kuang Y
    Small; 2021 Dec; 17(52):e2104307. PubMed ID: 34725925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting.
    Guo CX; Xie J; Yang H; Li CM
    Adv Sci (Weinh); 2015 Dec; 2(12):1500135. PubMed ID: 27980921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Rapid and Scalable Flame Synthesis of Efficient WO
    Chen H; Bo R; Tran-Phu T; Liu G; Tricoli A
    Chempluschem; 2018 Jul; 83(7):569-576. PubMed ID: 31950641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.
    Shen S; Li M; Guo L; Jiang J; Mao SS
    J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Dimensional CdS/Carbon/Au Plasmonic Nanoarray Photoanodes via In Situ Reduction-Graphitization Approach toward Efficient Solar Hydrogen Evolution.
    Peng Z; Zhang J; Liu P; Claverie J; Siaj M
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34658-34670. PubMed ID: 34254774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Nanoporous BiVO
    Bera S; Lee SA; Lee WJ; Kim JH; Kim C; Kim HG; Khan H; Jana S; Jang HW; Kwon SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14291-14301. PubMed ID: 33734677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pristine GaFeO
    Sun X; Wang M; Li HF; Meng L; Lv XJ; Li L; Li M
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205907. PubMed ID: 36658721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes.
    Galán-González A; Sivan AK; Hernández-Ferrer J; Bowen L; Di Mario L; Martelli F; Benito AM; Maser WK; Chaudhry MU; Gallant A; Zeze DA; Atkinson D
    ACS Appl Nano Mater; 2020 Aug; 3(8):7781-7788. PubMed ID: 32954224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting.
    Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J
    ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni-FeOOH Nanorods for Zero-Onset-Potential Water Splitting.
    Li B; Jian J; Chen J; Yu X; Sun J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7038-7046. PubMed ID: 31967447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New aspects of improving the performance of WO
    Cen J; Wu Q; Yan D; Zhang W; Zhao Y; Tong X; Liu M; Orlov A
    RSC Adv; 2019 Jan; 9(2):899-905. PubMed ID: 35517607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical Performance of Strontium Titanium Oxynitride Photo-Activated with Cobalt Phosphate Nanoparticles for Oxidation of Alkaline Water.
    Amer MS; Arunachalam P; Ghanem MA; Al-Mayouf AM; Weller MT
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting.
    Zhang J; Zhang Q; Wang L; Li X; Huang W
    Sci Rep; 2016 Jun; 6():27241. PubMed ID: 27250648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.
    Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S
    Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A uniformly decorated and photostable polydopamine-organic semiconductor to boost the photoelectrochemical water splitting performance of CdS photoanodes.
    Ruan M; Guo D; Jia Q
    Dalton Trans; 2021 Feb; 50(5):1913-1922. PubMed ID: 33475654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of Charge Carrier Recombination in CuWO
    Grigioni I; Polo A; Nomellini C; Vigni L; Poma A; Dozzi MV; Selli E
    ACS Appl Energy Mater; 2023 Oct; 6(19):10020-10029. PubMed ID: 37830012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Photoelectrochemical Activity by Autologous Cd/CdO/CdS Heterojunction Photoanodes with High Conductivity and Separation Efficiency.
    Xie S; Zhang P; Zhang M; Liu P; Li W; Lu X; Cheng F; Tong Y
    Chemistry; 2017 Jul; 23(40):9625-9631. PubMed ID: 28510292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO
    Wang S; He T; Chen P; Du A; Ostrikov KK; Huang W; Wang L
    Adv Mater; 2020 Jul; 32(26):e2001385. PubMed ID: 32406092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, characterization and photoelectrochemical properties of CdS/CdSe nanofilm co-sensitized ZnO nanorod arrays on Zn foil substrate.
    Li C; Chen S; Gao X; Zhang W; Wang Y
    J Colloid Interface Sci; 2021 Apr; 588():269-282. PubMed ID: 33412350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.