These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34726222)

  • 1. Direction reversing active Brownian particle in a harmonic potential.
    Santra I; Basu U; Sabhapandit S
    Soft Matter; 2021 Nov; 17(44):10108-10119. PubMed ID: 34726222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stationary states of an active Brownian particle in a harmonic trap.
    Nakul U; Gopalakrishnan M
    Phys Rev E; 2023 Aug; 108(2-1):024121. PubMed ID: 37723685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady state of an active Brownian particle in a two-dimensional harmonic trap.
    Malakar K; Das A; Kundu A; Kumar KV; Dhar A
    Phys Rev E; 2020 Feb; 101(2-1):022610. PubMed ID: 32168649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Brownian motion with directional reversals.
    Santra I; Basu U; Sabhapandit S
    Phys Rev E; 2021 Jul; 104(1):L012601. PubMed ID: 34412243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Brownian motion in two dimensions under stochastic resetting.
    Kumar V; Sadekar O; Basu U
    Phys Rev E; 2020 Nov; 102(5-1):052129. PubMed ID: 33327209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically emergent correlations between particles in a switching harmonic trap.
    Biroli M; Kulkarni M; Majumdar SN; Schehr G
    Phys Rev E; 2024 Mar; 109(3):L032106. PubMed ID: 38632730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertia suppresses signatures of activity of active Brownian particles in a harmonic potential.
    Arredondo A; Calavitta C; Gomez M; Mendez-Villanueva J; Ahmed WW; Brubaker ND
    Phys Rev E; 2024 Mar; 109(3-1):034405. PubMed ID: 38632789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial active Ornstein-Uhlenbeck particle in the presence of a magnetic field.
    Muhsin M; Sahoo M
    Phys Rev E; 2022 Jul; 106(1-1):014605. PubMed ID: 35974582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a magnetic active Brownian particle under a uniform magnetic field.
    Vidal-Urquiza GC; Córdova-Figueroa UM
    Phys Rev E; 2017 Nov; 96(5-1):052607. PubMed ID: 29347786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-phoretic oscillatory motion in a harmonic trap.
    Alexandre A; Anderson L; Collin-Dufresne T; Guérin T; Dean DS
    Phys Rev E; 2024 Jun; 109(6-1):064147. PubMed ID: 39020931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial particle under active fluctuations: Diffusion and work distributions.
    Goswami K
    Phys Rev E; 2022 Apr; 105(4-1):044123. PubMed ID: 35590542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-time position distribution of an active Brownian particle in two dimensions.
    Basu U; Majumdar SN; Rosso A; Schehr G
    Phys Rev E; 2019 Dec; 100(6-1):062116. PubMed ID: 31962395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active matter at high density: Velocity distribution and kinetic temperature.
    Caprini L; Marini Bettolo Marconi U
    J Chem Phys; 2020 Nov; 153(18):184901. PubMed ID: 33187418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of an active asymmetric rigid Brownian particle in two dimensions.
    Ghosh A; Mandal S; Chakraborty D
    J Chem Phys; 2022 Nov; 157(19):194905. PubMed ID: 36414451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective temperatures in inhomogeneous passive and active bidimensional Brownian particle systems.
    Petrelli I; Cugliandolo LF; Gonnella G; Suma A
    Phys Rev E; 2020 Jul; 102(1-1):012609. PubMed ID: 32794963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positing the problem of stationary distributions of active particles as third-order differential equation.
    Frydel D
    Phys Rev E; 2022 Aug; 106(2-1):024121. PubMed ID: 36109956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of microswimmers from passive Brownian particles in a spherically aberrated optical trap.
    Mondal A; Roy B; Banerjee A
    Opt Express; 2015 Mar; 23(6):8021-8. PubMed ID: 25837140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active search for a reactive target in thermal environments.
    Go BG; Jeon E; Kim YW
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian motion of an asymmetrical particle in a potential field.
    Grima R; Yaliraki SN
    J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.