These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34726392)

  • 1. Microwave Metamaterial Absorbers with Controllable Luminescence Features.
    Chen W; Zhan J; Zhou Y; Chen R; Wang Y; Ma Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54497-54502. PubMed ID: 34726392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures, principles, and properties of metamaterial perfect absorbers.
    Zhao C; Wang H; Bu Y; Zou H; Wang X
    Phys Chem Chem Phys; 2023 Nov; 25(44):30145-30171. PubMed ID: 37916298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of an Ultra-Wideband Transparent Wave Absorber.
    Dai H; Li S; Dong P; Ma Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation, fabrication and characterization of THz metamaterial absorbers.
    Grant JP; McCrindle IJ; Cumming DR
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.
    Deng R; Li M; Muneer B; Zhu Q; Shi Z; Song L; Zhang T
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.
    Kim HK; Lee D; Lim S
    Sci Rep; 2016 Aug; 6():31823. PubMed ID: 27546310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber.
    Wang J; Yang R; Xu J; Tian J; Ma R; Zhang W
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature infrared-radar compatible stealthy metamaterial based on an ultrathin high-entropy alloy.
    Gui B; Wang J; Zhu Y; Zhang L; Feng M; Wang J; Ma H; Qu S
    Opt Express; 2022 Dec; 30(25):45426-45435. PubMed ID: 36522948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity.
    Gao Z; Xu C; Tian X; Wang J; Tian C; Yang B; Qu S; Fan Q
    Opt Express; 2021 Jul; 29(14):22108-22116. PubMed ID: 34265982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamaterials for remote generation of spatially controllable two dimensional array of microplasma.
    Singh PK; Hopwood J; Sonkusale S
    Sci Rep; 2014 Aug; 4():5964. PubMed ID: 25098976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-insensitive dual-wideband fractal meta-absorber for terahertz applications.
    Naveed MA; Bilal RMH; Rahim AA; Baqir MA; Ali MM
    Appl Opt; 2021 Oct; 60(29):9160-9166. PubMed ID: 34623998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Ultrathin Metasurface with a Low Radar Cross Section and Variable Infrared Emissivity.
    Zhang Z; Zhang L; Ren Z; Zhang Y; Hao T; Liu D; Xu L; Liu W; Sun J; Ji H; Wang Y
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38602127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-dependent wideband metamaterial absorber for ultraviolet to near-infrared spectral range applications.
    Li F; Issah I; Baah M; Amedalor R; Quarshie M; Bawuah P; Asamoah BO
    Opt Express; 2022 Jul; 30(15):25974-25984. PubMed ID: 36236796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials.
    Zhong S; He S
    Sci Rep; 2013; 3():2083. PubMed ID: 23803861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wideband and polarization-insensitive metamaterial absorber with loading lumped resistors.
    Xiong H; Bin Long T; Shi T; Xuan Jiang B; Tao Zhang J
    Appl Opt; 2020 Aug; 59(23):7092-7098. PubMed ID: 32788804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.