These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34726761)

  • 1. Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine.
    Dal Santo S; De Paoli E; Pagliarani C; Amato A; Celii M; Boccacci P; Zenoni S; Gambino G; Perrone I
    Plant Physiol; 2022 Jan; 188(1):490-508. PubMed ID: 34726761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic variants for seed and fruit set in grapevine.
    Costantini L; Moreno-Sanz P; Nwafor CC; Lorenzi S; Marrano A; Cristofolini F; Gottardini E; Raimondi S; Ruffa P; Gribaudo I; Schneider A; Grando MS
    BMC Plant Biol; 2021 Mar; 21(1):135. PubMed ID: 33711928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Genotype-Recalcitrant Somatic Embryogenesis Transdifferentiation in Cotton.
    Guo H; Guo H; Zhang L; Fan Y; Wu J; Tang Z; Zhang Y; Fan Y; Zeng F
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32392816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine.
    Wang P; Yang Y; Shi H; Wang Y; Ren F
    BMC Genomics; 2019 Oct; 20(1):740. PubMed ID: 31615400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants.
    San Pedro T; Gammoudi N; Peiró R; Olmos A; Gisbert C
    BMC Plant Biol; 2017 Nov; 17(1):226. PubMed ID: 29187140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatic Embryogenesis and Genetic Modification of Vitis.
    Dhekney SA; Li ZT; Grant TN; Gray DJ
    Methods Mol Biol; 2016; 1359():263-77. PubMed ID: 26619866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment.
    Maillot P; Velt A; Rustenholz C; Butterlin G; Merdinoglu D; Duchêne E
    BMC Plant Biol; 2021 Oct; 21(1):487. PubMed ID: 34696712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera.
    Gambino G; Minuto M; Boccacci P; Perrone I; Vallania R; Gribaudo I
    J Exp Bot; 2011 Jan; 62(3):1089-101. PubMed ID: 21127025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Characterization and Expression Profiling of GASA Genes during Different Stages of Seed Development in Grapevine (
    Ahmad B; Yao J; Zhang S; Li X; Zhang X; Yadav V; Wang X
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32041336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic embryogenesis is an effective strategy for dissecting chimerism phenomena in Vitis vinifera cv Nebbiolo.
    Gambino G; Moine A; Boccacci P; Perrone I; Pagliarani C
    Plant Cell Rep; 2021 Jan; 40(1):205-211. PubMed ID: 33089358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in abscisic acid metabolism in relation to the maturation of grapevine (Vitis vinifera L., cv. Mencía) somatic embryos.
    Acanda Y; Martínez Ó; Prado MJ; González MV; Rey M
    BMC Plant Biol; 2020 Oct; 20(1):487. PubMed ID: 33097003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development.
    Toups HS; Cochetel N; Gray D; Cramer GR
    BMC Genomics; 2020 Jul; 21(1):472. PubMed ID: 32646368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome.
    Dal Santo S; Zenoni S; Sandri M; De Lorenzis G; Magris G; De Paoli E; Di Gaspero G; Del Fabbro C; Morgante M; Brancadoro L; Grossi D; Fasoli M; Zuccolotto P; Tornielli GB; Pezzotti M
    Plant J; 2018 Mar; 93(6):1143-1159. PubMed ID: 29381239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection.
    Bhatia G; Upadhyay SK; Upadhyay A; Singh K
    BMC Plant Biol; 2021 Jun; 21(1):265. PubMed ID: 34103007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine.
    Dai R; Ge H; Howard S; Qiu W
    Plant Sci; 2012 Dec; 197():70-6. PubMed ID: 23116673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic variation and association analyses identify genes linked to fruit set-related traits in grapevine.
    Zinelabidine LH; Torres-Pérez R; Grimplet J; Baroja E; Ibáñez S; Carbonell-Bejerano P; Martínez-Zapater JM; Ibáñez J; Tello J
    Plant Sci; 2021 May; 306():110875. PubMed ID: 33775372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.).
    Wang P; Xuan X; Su Z; Wang W; Abdelrahman M; Jiu S; Zhang X; Liu Z; Wang X; Wang C; Fang J
    BMC Plant Biol; 2021 Sep; 21(1):442. PubMed ID: 34587914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine.
    Maillot P; Lebel S; Schellenbaum P; Jacques A; Walter B
    Plant Physiol Biochem; 2009 Aug; 47(8):743-52. PubMed ID: 19406655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus.
    Lizamore D; Bicknell R; Winefield C
    BMC Genomics; 2021 Sep; 22(1):676. PubMed ID: 34544372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.